
1

Allen Rabinovich
Sebastian Ortiz

Building a Desk Worker Allocation System
For Random Hall Dormitory

October 28th, 2002
6.034 Intensive
TA: Jake Beal

2

Abstract

 The issue of resource allocation is a popular problem that arises in many

areas of human life. The difficulty of the problem can range from very easy to

extremely challenging, and depends primarily on the number and complexity of

requirements and preferences of variables and values involved. To solve the

problem as applied to the schedule allocation of desk workers in Random Hall

dormitory, we have developed an application in Java. The application takes a set

of workers, each with individual preferences and requirements, and attempts to

produce a set of assignments that would maximally satisfy first the requirements,

and then the preferences of the assignees. The sample executions demonstrate

that the system is capable of creating a working set of assignments with a fair

measure of preference satisfaction.

3

Overview

 Resource allocation is a realistic problem, frequently encountered in

systems that require scheduling or unique assignments. In this particular

application, a group of n (between 10 and 20) workers is to be scheduled for 133

hours of desk shifts (7 days of 19 hours each), each shift can last for multiple

hours. Each worker has a set of requirements and preferences, defined by their

existing schedule, personal preference, seniority and reliability. Our application

takes all of these factors into account, and attempts to produce a set of

assignments that maximally satisfy the requirements, while also maximizing the

number of satisfied preferences. The utilized method involved performing

”intelligent” constraint propagation both among students and time slots, and

sequentially eliminating candidates, until a set of assignments with satisfied

requirements and maximally satisfied preferences is produced.

Design

 The first logical step in developing a solution to the problem was to design

a convenient representation for the two main components of the system and the

interaction between them. We have decided to regard workers and hourslots as

individual objects, each with a set of specific properties. For the purposes of

constraint propagation, we made a choice of considering HourSlots to be

variables, and Workers to be values. The reason for this choice was the fact that

by the end of the program’s run, each HourSlot must contain a unique Worker

value; however, each Worker can be assigned to multiple HourSlots.

 The Worker class is essentially a list of properties with an identifier

property (the name of the student). The properties are: availability hours

(recorded as a two-dimensional array with days as columns, hours as rows, and

binary values representing occupation during a certain day-hour), minimum

hours, maximum hours, rank, worker’s fill-in property, hours available (a count of

hours that chooses the smaller of maximum hours and total availability hours),

and assigned hours. An Hourslot class, in turn, is identified by properties Day

and Hour, and contains a list of all possibleWorkers for the particular hour. Both

classes have a set of built-in methods that allow us to easily modify and retrieve

information from each instance.

4

 The input to the system is a set of definitions of instances of Worker class;

the output is an assignedSlots vector of all assigned Hourslot instances, each

containing 0 or 1 possibleWorkers as an assignment. An additional workerList

class is used for bookkeeping purposes.

 Here is a graphical representation of the system structure prior to and post

execution:

Prior to execution:

After execution:

Workers

Worker
Instance

Worker
Instance

Worker
Instance

Worker
Instance

Hour Slots

Hour Slot
Instance

Hour Slot
Instance

Hour Slot
Instance

Hour Slot
Instance

Assigned
Hour Slots

Workers

Worker
Instance

Worker
Instance

Worker
Instance

Worker
Instance

Hour Slots

Hour Slot
Instance

Hour Slot
Instance

Hour Slot
Instance

Hour Slot
Instance

Assigned
Hour Slots

5

From the very beginning, we considered the maximal schedule filling to be a

priority over the worker preference satisfaction. However, the requirements for

each worker were a top priority as well.

Implementation

 The constraint propagation in our design is conducted on multiple levels --

after every ”run around the circle”, the uniquely determined assignments are

accounted for, and the propagation is continued, until no possibility for making

unique assignments is left. We exercise constraint propagation both among

workers and hour slots. Here’s an algorithmic step-by-step representation of the

run:

Pre-processing: Parse the string assignment lists of

workers into their availability hours matrices; at

parse-time, immediately introduce the basic

constraints (i.e., cannot work Saturday &

Sunday nights if nightwatch, unless otherwise

specified). Add the workers to jgurch

1. If there exist hourslots with unique worker

assignments, move the hourslot to the list of

assigned slots list; update the respective worker’s

properties to reflect the assignment. Repeat until

no unique worker assignments are left.

2. Choose the next hour slot to consider based on a

set of properties of workers who can possibly be

assigned to it. If no such slots are left, consider

”fill-in”workers for these slots, assign them if

possible, and then exit the program returning the

current assignedSlots vector. Else, proceed to

next step.

3. For the chosen hour slot, choose a worker based

on a set of properties of each candidate worker.

4. Proceed to step 1.

The decision-making details in the above algorithm are of particular importance

and deserve elaboration.

6

 In step 1, the ”unique worker assignments” could either be naturally

existing in the initial set of hour-worker assignment, i.e. in a case where an hour

only has one possible worker, or could be produced by a preceding run of the

algorithm. Since hour-filling was a top priority, we first assigned these cases, to

make sure that hours with the great restrictions upon them are filled.

 In step 2, after elimination of all hour/single worker pairs, we proceed to

determine the most appropriate hour slot to pick the worker for. The decision

algorithm uses the number of possible workers for each hour slot as the heuristic,

using the sum of worker’s possible shift lengths (shift length is the longest shift

each worker can work that would include the particular slot) as a secondary

heuristic in case of a tie between the numbers of workers. We fill the slots that

have the minimum number of workers, but resolve ties by picking the slots with

greatest sums of shift lengths; the motivation is as follows: it is important to

assign slots with fewest possible chances to be filled; however, it is also essential

that the slots that have a potential to introduce the maximum number of

assignments in the neighboring slots are prioritized as well.

 If we cannot find any slots with the number of possible workers greater

than 1, we leave the program and output the latest value of the assignment

vector. If a slot is produced, we continue to choosing a worker for it.

 In step 3, we look at the set of workers who can work the particular slot

and decide in favor of one among them. The decision is made by considering if a

worker is allowed to work that day (the assumption is made, as stated by the

problem, that a worker is only allowed to work one shift during the day -- we

check for the presence of another shift and possibility of ”connecting” to that

shift -- i.e. extending it -- and if the shift is presence, and connection is not

possible, we remove the worker), and by comparing the difference of each

worker’s available hours and minimum hours. The produces a heuristic that can

be described as ”number of hours the worker will have left after satisfying his

minimum hours”. This heuristic is simply the number of available hours as soon

as the worker satisfies his minimum hours (i.e., no negative numbers) Since

satisfying minimum hour constraint is a requirement, it may at first appear

strange that we are using a difference of a requirement and a preference; however,

we found that simply considering minimum hours produces inferior results. It is

more important to consider workers who have the least ability to satisfy their

minimum hours, rather than workers with the greatest minimum hours (for

example, a worker with 10 minimum hours but 20 available hours is in better

position than a worker with 2 minimum hours, but only 2 available hours.) The

7

secondary heuristic we use in this step is the product of the worker rank with the

maximal shift length of the workers who tied; i.e., how long of a shift a worker

can have around the particular hour slot. That allows us to assign the worker

who has the greatest potential of filling the slots around the current slot, while

balancing it with his or her seniority; if the worker’s seniority greatly exceeds the

difference between two workers’ maximal shift lengths, that worker will prevail;

this produces longer continuous shifts, while allowing us to satisfy workers’

preferences.

Conclusion

 When we were choosing the particular elements for the design of our

implementation, we considered the suggestions made Amanda Wozniak; the

provided samples gave us a good idea of the importance of certain factors and the

priority of some aspects of the problem over the other. On the basis of these

samples, we constructed a system that takes in a plausible number of constraints

(a number that does not make the system unnecessarily complex), and produces

a reasonable output, where the workers are assigned in a more ”human” way

(i.e., continuous shifts, priority of filling the time slots over the worker

preferences.). There is plenty of space for improvement, however: we did not

consider the worker reliability factor (the sample sets had ”Unreliable on

weekends” comment fields), and we did not consider the worker preference as

much as we would have wanted. There’s also much to be desired in terms of

interface: we have not developed a GUI, and though that is not a difficult

problem, it’s an inconvenience. However, above the shortcomings, the system

does produce a plausible result and can be used for building weekly desk

schedules.

