
Aesthetics of Computation—
Unveiling the Visual Machine

Jared Schiffman

S.B. Computer Science and Engineering, minor in Mathematics

Massachusetts Institute of Technology

June 1999

Submitted to the Program in Media Arts and Sciences

School of Architecture and Planning

in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences at the

Massachusetts Institute of Technology

September 2001

© Massachusetts Institute of Technology

All Rights Reserved

Author: Jared Schiffman
Program in Media Arts and Sciences
August 10, 2001

Certified by: John Maeda
Associate Professor of Design and Computation
Thesis Supervisor

Accepted by: Stephen A. Benton
Chair, Department Committee on Graduate Studies
Program in Media Arts and Sciences

Aesthetics of Computation—
Unveiling the Visual Machine

Jared Schiffman

S.B. Computer Science and Engineering, minor in Mathematics

Massachusetts Institute of Technology

June 1999

Submitted to the Program in Media Arts and Sciences, School of

Architecture and Planning, on August 1, 2001, in partial fulfillment

of the requirements for the degree of Master of Science in Media Arts

and Sciences at the Massachusetts Institute of Technology,

Abstract

This thesis presents a new paradigm for the design of visual
programming languages, with the goal of making computation
visible and, in turn, more accessible. The Visual Machine
Model emphasizes the need for clear visual representations
of both machines and materials, and the importance of con-
tinuity. Five dynamic visual programming languages were
designed and implemented according to the specification of
the Visual Machine Model. In addition to individual analysis,
a comparative evaluation of all five design experiments is
conducted with respect to several ease of use metrics and
Visual Machine qualities. While formal user tests have not
been conducted, preliminary results from general user experi-
ences indicate that being able to see and interact with compu-
tation does enhance the programming process.

Thesis Supervisor: John Maeda

Associate Professor of Design and Computation

MIT Media Laboratory

Aesthetics of Computation—
Unveiling the Visual Machine

Jared Schiffman

Thesis Reader:

Harold Abelson
Class of 1922 Professor of Computer Science & Engineering
MIT Electrical Engineering & Computer Science Department

Aesthetics of Computation—
Unveiling the Visual Machine

Jared Schiffman

Thesis Reader:

Mitchel Resnick
LEGO Papert Professor of Learning Research
Associate Professor
MIT Media Laboratory

Aesthetics of Computation—
Unveiling the Visual Machine

Jared Schiffman

Thesis Reader:

Whitman Richards
Professor of Cognitive Science, Media Arts and Sciences
MIT Artificial Intelligence Lab

Acknowledgements

The designs in this thesis are as much a product of my own work

as they are of the work of the Aesthetics & Computation Group.

The ideas contained herein are the result of five years of sharing a

common space and a common ambition with a set of brilliant and

creative designer/technologists:

The fearless leader of this dynamic group is the source of inpsira-

tion for all who dwell here. His words are jumbled. His designs are

beautiful. Thank you, John, for everything.

This thesis would not be the document that it is now without

the sincere effort of the three readers: Prof. Harold Abelson, Prof.

Mitchel Resnick and Prof. Whitman Richards.

To my parents, thank you, for the quarter-century of love and

support that you have always provided. For loving me for who I am

and always being proud.

To Kate, my wife, so happy that you are.

For helping me forget that I was writing a thesis,

and for reminding me, even when I had not forgotten.

I love you.

Chloe Chao

Peter Cho

Elise Co

Rich DeVaul

Joy Forsythe

Ben Fry

Matt Grenby

Golan Levin

Bill Keays

Omar Khan

Axel Killian

Max Van Kleek

Reed Kram

Nikita Pashenkov

Casey Reas

David Small

Tom White

Contents

Chapter 1 : Introduction
 1.1 Two Rooms 15
 1.2 Unveiling the Visual Machine 15
 1.3 Making Programming Easier 16
 1.4 Ease of Use 18
 1.5 Contributions 20
 1.6 Overview of Thesis 21

Chapter 2 : Context
 2.1 With and Without Visible Computation 23
 2.2 Text-based vs. Visual Representations 26
 2.3 Modes of Synthesis 30
 2.4 Graphic Design in Visual Programming 42

Chapter 3 : the Visual Machine
 3.1 Motivation for Model 45
 3.2 The Visual Machine Model 45
 3.3 Two Elements 46
 3.4 One Principle 48

Chapter 4 : Design Experiments
 4.1 Turing 54
 4.2 Plate 60
 4.3 Pablo 64
 4.5 Nerpa 68
 4.6 Reverie 70
 4.7 User Testing 72

Chapter 5 : Discussion & Analysis
 5.1 Successes 75
 5.2 Challenges 77
 5.3 Comparative Evaluation 79
 5.4 Future Work 84
 5.5 Conclusion 85

Appendix A : Prior Work 88
Appendix B : Issues and Justifications 100
Appendix C : Implementation 102

1 : Introduction : 15

Chapter 1 : Introduction

1.1 Two Rooms

 Imagine two rooms, separated by a wall which contains a

small glass window at eye-level. A programmer is in one room and

a computer (who might as well be a person) is in the other. [Searle,

Turing] Standing at the window, the programmer communicates to

the computer a long message which tells the computer what to do

in its respective room. The computer

then pulls a small curtain closed to

cover the window. Minutes (or sec-

onds) later, the computer returns to

the window, draws open the curtain,

and hands a message back to the pro-

grammer that contains the result of

the computer’s work. If the result is not correct, the programmer

has no recourse but to rewrite the message and try again. However,

if the curtain were never closed, the programmer could simply

look into the computer room and see exactly when and where

the mistake was made. Unfortunately, in modern programming

environments, the curtain is always closed on computation.

1.2 Unveiling the Visual Machine

 This thesis aims to improve the process of programming

by introducing a new breed of visual programming languages and

accompanying environments which make visible the computation

that they create. These new entities are called Visual Machine Lan-

guages. While current text-based and visual programming systems

enable the abstract specification of computation, they are incapable

of displaying that computation. Visual Machine Languages, how-

ever, allow for both the specification and visualization of computa-

tion in a continuous graphical environment and with a single

visual language. By making explicit the secret reality of computa-

tion which heretofore has been invisible, Visual Machine Lan-

guages could have a significant impact on the way that people

create programs.

1 : Introduction : 16

1.3 Making Programming Easier

 Programming is the process of creating computation. As

much as being a practice of science or engineering, programming is

a craft. Like any craft, programming involves the manipulation of

a medium, namely computation, by using tools, namely program-

ming languages and environments. Computational media should

be as malleable, vivid, and approachable as any craft media. Unfor-

tunately, modern programming tools prevent computation from

being accessible or even visible to the curious novice, not to men-

tion the general population.

1.3.1 Programming Concepts are Simple

 Surprisingly, the concepts which underlie programming

are not difficult to understand. Explaining the ideas of

sequential execution, conditionality, repetition, and proceduraliza-

tion requires about one hour of teaching. Likewise, explaining the

notions of variables, types, data structures, and even classes can

be accomplished in an additional hour. These ideas can be under-

stood quite easily when framed within a real-world context such as

drawing, cooking or construction. Why then are semester-long col-

lege courses spent teaching students to utilize these programming

concepts, when they could be learning about algorithms or proper

programming practice? Perhaps, the answer to this question is that

modern programming systems provide an incomplete set of tools

and representations for dealing with computation as a medium.

1.3.2 Programming Systems are Incomplete

 Programming, as it exists today, means specifying compu-

tation. The specification, however, is not the computation. In the

same way that blueprints are not a building, and a score is not a

symphony—code is not computation. It is essential to make this

distinction.

 Programmers spend all day looking at source code, but

almost never see computation. When computation does occur,

what the programmer sees is not the computation, but the output

of the computation. It may be a window, or a button, or a string

of text, but it is all just a remnant. It is not the computation.

Oftentimes, when in search of a bug, a programmer will coerce

1 : Introduction : 17

the computation to leave footprints in the output. Still, the animal

is never seen. The absence of a means to view and interact with

computation directly is why programming systems are incomplete.

 Debuggers are meant to reveal computation, but as most

experienced programmers will agree, debuggers are hardly worth

their weight in code. The reason that debuggers are generally inef-

fectual, is that they only show snapshots of computation in the

past. These static images still require the programmer to infer what

must have happened prior to the first snapshot and in between all

the steps. Frustration is the general response to debuggers, since

what the programmer actually wants is to watch the computation

unfolding smoothly over time, changing slowly, gently, predictably

and meaningfully, and being presented in an appropriate visual

representation.

1.3.3 Programming with Visible Computation

 Once computation is made visible and then interactive,

programming will be a more complete experience. Programming

will still involve the specification of computation. However,

instead of having to “imagine the dynamic behavior of a program

while…writing its static description” [Koike 1995], a programmer

will be able to set a program running, and then actually watch

and take part as the computation develops. Debugging may simply

involve carefully watching for an unexpected change. Likewise,

learning to program may become as easy as playing with a program

and observing it in action.

 Visible computation involves more than just observing

computation. It also allows for direct interaction. For example,

after beginning the execution of a program, a programmer may

pause the computation, adjust a variable value or change a switch-

ing mechanism, and then continue the program running. At this

point, computation will cease to be an abstract entity inside the

computer, and will become a true medium to be sculpted like clay.

1 : Introduction : 18

1.4 Ease of Use

 Completeness for the sake of completeness is not

a goal unto itself. The objective in creating a program-

ming system with visible computation is ease of use.

Ease of use may be dissected into three related topics:

ease of comprehension (thinking), ease of construction

(writing), and ease of consumption (reading).

1.4.1 Ease of Comprehension

 Designing a representation of computation which is simple

to understand is the first step in developing a programming system

which is easy to use. Ease of comprehension is an inverse measure

of the amount of work that is required to move from one’s

understanding, having never seen a system, to one’s under-

standing, having mastered the system. Certainly, the new

ideas which are most easily understood are those that are

most similar to one’s preconceptions of how things should

be based on prior experience. This model of understanding

may explain why languages which are abstract (i.e. unfamil-

iar) often fail to capture the intuition of the user. More fleshed-out

models of computation which behave more like real world systems

should require less work to understand.

1.4.2 Ease of Construction

 A programming language which is easy to comprehend

may not necessarily be easy to create programs with. Attaining ease

of construction is a much greater challenge than it may seem at

first. Obstacles in the path of construction, such as arbitrary

syntax in text-based languages, are the primary difficulty

for most novices when learning to program. Even for pro-

fessional programmers, errors of construction, in the form

of syntax errors, are the most common type of errors. In

addition to syntax, another factor in difficulty of construction

is the type and size of the building blocks involved. Availability

of an appropriate set of blocks can greatly enhance the ease of

construction. For a domain-specific language, this means having

domain-specific operations and data types. For a general-purpose

language, there are a variety of potential solutions.

1 : Introduction : 19

1.4.3 Ease of Consumption

 Even a visual programming language which has both ease

of comprehension and construction may still not be easy to read or

consume. As Abelson and Sussman state, “programs must be writ-

ten for people to read, and only incidentally for machines to

execute.” [Abelson] Readability is often an underestimated

goal when designing a programming language. The goal

of readability is not intended so much for the program

creator but for the creator’s colleagues who will later have

to debug and extend the original code. While commenting

one’s code helps to solve this problem, being able to quickly

navigate, parse, and interpret an entire program based solely on the

code would be a dream come true for any software developer. Of

course, the end goal of code consumption is code comprehension,

which ties back to the original goal, ease of use.

1 : Introduction : 20

1.5 Contributions

 The goal of this thesis was to create new visual program-

ming languages that advanced the field both aesthetically and in

terms of user interaction. As a result of the work done in pursuit of

this goal, this thesis delivers the following contributions:

1. Visible computation. Identification of the need for visible and

interactive computation in order to deal with computation as a

true medium.

2. The Visual Machine Model. This model represents a fully-

articulated paradigm for the design of programming systems that

make computation visible.

3. Five Visual Machine Languages. These five experimental instan-

tiations of the Visual Machine provide a glimpse of how com-

pletely different the process of programming could be in the

presence of visible computation.

1 : Introduction : 21

1.6 Overview of Thesis

 The following section is a preview of the remaining chap-

ters of the thesis.

 Chapter 2, Context, provides background information and

support for the developments in Chapters 3 and 4. Chapter 2

begins with a look at programming as it exists today, without vis-

ible computation. The chapter continues with a discussion of the

relative merits of textual representations versus visual representa-

tions. This is followed by a brief review of traditional models of

computation and programming interfaces. The chapter closes with

an analysis of the role that graphic design must take in the creation

of visual programming environments.

 Chapter 3, the Visual Machine, introduces the Visual

Machine Model, which is a prescription for the creation of Visual

Machine Languages. The Visual Machine Model requires the exis-

tence of a machine, a material, and a relationship between the

two. The model also includes a design principle which stresses the

importance of visual, interactive, and semantic continuity.

 Chapter 4, Design Experiments, presents five Visual

Machine Languages that were implemented according to the Visual

Machine Model: Turing, Plate, Pablo, Nerpa and Reverie. Each

of these designs takes a thoroughly different approach, both visu-

ally and conceptually, to fulfilling the Visual Machine Model. For

each language, there is a description of the system’s computational

model, visual language, and method for demonstrating computa-

tion. Additionally, a sample construction is provided with each

language.

 Chapter 5, Analysis and Discussion, elicits both the suc-

cesses within the design experiments, as well as the challenges

and pitfalls which were encountered during the design process.

This is followed by a comparative evaluation of all the designs,

with respect to ease of use, and aspects of the Visual Machine

Model. The thesis concludes with a look to the future and a brief

summation.

 The Appendix includes a presentation of select contempo-

rary visual programing environments, notes on the Visual Machine

implementations, as well as a few thoughts regarding the approach

of the thesis.

2 : Context : 23

Chapter 2 : Context

2.1 With and Without Visible Computation

 Stating that modern programming systems are incomplete

may be considered heresy. Clearly, millions of people have already

learned to program using current methods, and billions of lines of

code have already been written. How could systems that enabled

this possibly be incomplete? The answer to this question is sug-

gested by the fact that so many problems associated modern pro-

gramming could be alleviated if the computational product of

programming were made visible. As Elizabeth Freeman notes,

“viewing a program’s execution is valuable when programmers

need to correct bugs, improve performance, understand algorithms,

and make updates.” [Freeman p.305] This section examines how

the inability of programming systems to display computation nega-

tively affects their ease of use, as well as how having this capability

in a programming system could greatly enhance the process of

making programs.

2.1.1 Comprehending Computation

 When attempting to program using modern programming

systems, novice programmers (including those taking programing

classes) construct their own internal representation of the com-

putation through a process of trial and error. “If novice program-

mers are not given a model of a virtual machine, they may

invent an inappropriate explanation, working from sources

of information such as observing a debugger, extrapolating

from tutorial code examples, or imagining the behavior of

an internal agent.” [Blackwell p. 246] If their learning pro-

cess is successful, then their internal representation will be an

accurate model of computation which can predict the behavior of a

program based on its source code specification. For most program-

mers, however, this is a several year ordeal which is punctuated

by moments of sheer frustration. Given this method of learning,

arriving at a complete understanding of even one programming

language is a major accomplishment.

 If programmers were able to view and interact with a cor-

2 : Context : 24

rect model of the computation manifested via the source code,

then the learning process would be completely different. Rather

than having to construct their own model through trial and error,

a novice programmer could simply observe the computation pro-

gressing smoothly and predictably on screen and adopt that model

as his or her own. This process would be no different than watch-

ing a pin-ball machine in action in order to inform one’s gameplay.

From the beginning, a novice programmer would think in terms

of the fundamentally dynamic processes involved in computation,

instead of the static elements of the specification language. Not

only would the presented model of computation be accurate, but

it would also be the same model that is understood by all pro-

grammers who learned in this manner. This shared understanding

might even engender effective communication between program-

mers.

2.1.2 Constructing Computation

 Programming, as it exists today, is perhaps the only disci-

pline in which the creator has essentially no view of the product

that he or she is creating. While the specification of the com-

putation is visible, and the output of the computation is

visible, the computation itself is entirely invisible. Natu-

rally, this makes constructing computation quite difficult.

Since the output of the computation often reflects many

lines of code, a mistake in just one line of code may not be

noticed until it is manifested in the output at a much later point

in time. This is a fundamental problem with the construction of

programs.

 However, if the programmer were readily able to the view

computation as it is occurring, then he or she would quickly notice

that the mistake was made, since it would be visible at the exact

point of error. Furthermore, if the computation was designed to be

interactive, then the programmer might be able to fix the mistake

on the spot, during the execution. In fact, one might even be able to

construct an entire program during its own execution. This mode

of construction might significantly reduce the number of mistakes

that are left unchecked, since the programmer would always be in

direct contact with the material being manipulated.

2 : Context : 25

2.1.3 Consuming Computation

 Even more difficult than constructing computation blindly

is consuming invisible computation created by another person.

People who are confronted by a need to understand a program
[written by another person] usually have only two alternatives:
studying the source code, or running the program to see what it
does. Ideally, a program would be understandable using one or
the other of these methods; in practice, reading source code is
impractically cumbersome for many programs, and construction
of test cases to explain program behavior is often a tedious and
speculative undertaking. [Jeffery p.4]

Even code that is laced with comments and perfectly composed

is almost impossible to understand without exerting a great

deal of effort on the part of the reader. The code consumer

must spend hours pouring over the code in order to recon-

struct the mental map and other ideas that existed in the

creator’s mind at the time of creation. Simply determining

the basic pathway that the computation takes through the code

is an arduous task. These are the reasons why a software develop-

ing team of one can work much more quickly and efficiently than

a team of three.

 No doubt, making computation visible would greatly sim-

plify the process of consuming computation. In order to determine

the pathway of the computation, one could simply set the program

running and watch as the flow of control smoothly makes its way

around the space of the code. Repeating this process several times

at finer levels of detail would give the consumer an excellent

understanding of what the program is actually doing. One could

also choose to run just a part of the code, and during execution,

decide to insert values into the computation to see the effect.

Providing an environment in which one can freely, quickly, and

effortlessly play with and observe pre-existing computation could

change entirely the way that programs are shared.

The following two sections present analysis and discussion of

traditional design principles and techniques which are used in the

creation of modern visual programming systems.

2 : Context : 26

2.2 Text-Based vs. Visual Representations

 Text-based programming languages are now and always

have been the most prevalent means of specifying computation.

Despite twenty-five years of research in the field of visual program-

ming, text-based systems have maintained their hegemony both

in industrial and academic institutions. While these results are

not encouraging for visual programming researchers, they continue

with their mission because they believe that a visual representation

of computation can be a superior representation to the text-based

alternative. Certainly, there are instances in which each mode of

representation is more appropriate than the other. Understanding

when and why to apply each of the representations is a prerequi-

site for designing innovative and easy to use programming systems.

2.2.1 Comprehending Representations

 Optimally, in order to improve understanding, the repre-

sentation of computation that is presented to the user should

resemble the user’s prior internal representation. [Lindsay] “One

reason for the difficulty ordinary people (nonprogrammers) have

in programming computers is the conceptual gap between

the representations their brains use when thinking about

a problem and the representation they have to use

in instructing the computer.” [D.C. Smith p.330] In gen-

eral, for most technical problems, including computation,

people think in visual or spatial terms. Scientists, engineers

and mathematicians tend to conceive of solutions to complicated

problems visually, even when the final output is expected to be

stated mathematically. Performing the translation process back and

forth between one’s internal visual representation and an external

textual representation is bearable in mathematics where equations

are at most a few lines long, but doing so in software development

is a serious burden since even a short program can be a page long

or more. Additionally, mathematical equations are meant to shared

and read by people, while currently computer programs are written

for the computer alone. Given the power of modern computers,

it is absurd that humans still waste their clock cycles translating

their thoughts to be easy for a computer to understand, instead of

the other way around.

2 : Context : 27

2.2.2 Constructing Representations

 Theoretically, the process of composing programs using

text could be a simple task. People have no difficulty writing

long text documents in their native tongue, so why should

writing a program be any different? If one could program in

one’s native language, then using text might be a natural

choice for a programming system. The HyperTalk scripting

language (Figure 2.2.2.1.) for the HyperCard development

environment is so similar to English, that it is even readable by

non-programmers. Unfortunately, even HyperTalk is constrained

by its own syntax. Unlike any spoken or written language, even

a minor syntax error in most text-based systems will cause all of

the semantics to be lost (Figure 2.2.2.2.) While parsing the stilted

hierarchy of code with its intricate punctuation is a thoroughly

taxing process, generating such code character by character is an

even greater charge. Obviously, this is a weighty burden to put

on any person. “Traditionally, the syntax of

a source program bears no relationship to the

runtime process that is the execution of that

program. This is true for textual languages,

and for the most visual languages as well.”

[Freeman p.305] Methods for composing pro-

grams which alleviate the problem of syntax

are presented in the Section 2.3.

 There are specific instances when text

is extremely useful for constructing parts of

a computation within a greater representation.

When user-defined identifiers are necessary

within a programming language, text is the

on mouseUp
 put eld “input 1” into A
 put eld “input 2” into B
 if the length of A is not the length of B then
 go to next card
 end if
end mouseUp

Figure 2.2.2.1. Example of code in the HyperTalk scripting language.

if (count==5)
 drawRectangle(10,10);

if (count==5)
 drawRectangle(10,10)

if (count==5)
 drawRectangle(10 10);

if (count=5)
 drawRectangle(10,10);

if [count==5]
 drawRectangle[10,10];

Figure 2.2.2.2. The first statement is syn-
tactically correct. The other four are not.

2 : Context : 28

appropriate representation specifically for those identifiers. Even

when restricting names to a mere six letters, there are over 300

million possible identifiers available. Granted, most of these will

be meaningless, but the point is that text-based identifiers remain

trivial to generate, endlessly abundant, and easy to recognize.

Creating visual identifiers is a much greater challenge. Since an

identifier generally represents a specific concept, generating an

appropriate name based on the concept’s description is a much

simpler task than generating a picture which conveys the same

information.

2.2.3 Consuming Representations

 While text is effective for the creation of identifiers, the

sheer number of identifiers that are introduced, referenced and

discarded within modern text-based program languages can result

in programs that are incredibly difficult to follow. Every time

that a name or identifier is used within a program, an

internal reference is created. When many such references

accumulate, an implicit web of connections is formed

(Figure 2.2.3.1.) Unfortunately, in a text-based language,

this complex multi-dimensional web is

collapsed into a uniformly gray column of

code. To unravel this tangled web, one must

navigate the code along a one-dimensional

axis, in the same manner by which one

would undo a contorted knot.

 The one-dimensional nature of text

is by far its greatest detriment when rep-

resenting computation. While computation

may be reduced to one dimension, the nature

of computation is that it is replete with

multi-dimensional and non-linear structures.

These not only include complex data struc-

tures such as hierarchical trees and circular

lists, but also convoluted processes which

diverge, jump, and twist. When represented

visually, these kinds of structures maintain

more of their natural form, and do not

(define (partial-sum i n e ee base)

 (- (quotient base (* i e))

 (quotient base (* (+ 2 i) ee))))

(define (a n base)

 (do ((i 1 (+ 4 i))

 (delta 1 (partial-sum i n e (* e n n) base))

 (e n (* e n n n n))

 (sum 0 (+ sum delta)))

 ((zero? delta) sum)))

(define (calc-pi base)

 (- (* 32 (a 10 base))

 (* 16 (a 515 base))

 (* 4 (a 239 base))))

(define (run)

 (display “How many digits of pi do you want: “)

 (let ((num (read)))

 (if (and (not (eof-object? num))

 (integer? num)

 (positive? num))

 (let* ((extra (+ 5 (truncate

 (inexact->exact (log num)))))

 (base (expt 10 (+ num extra)))

 (pi (calc-pi base)))

 (display (quotient pi base))

 (display “.”)

 (display (quotient (remainder pi base)

 (expt 10 extra)))

 (newline)

 (run)))))

(run)

Figure 2.2.3.1. Illustration of the implicit
web of references within text-based code.

2 : Context : 29

require a process of translation or reconstruction in order to be

understood.

 The limits of a representation are ultimately defined by

the limits of human perception with respect to that representation.

One comes to programming with pre-existing set of skills for pro-

cessing both text and images. The processing of text relies on one’s

ability to read and understand written language. Written language

is an extremely compact but powerful means of representation,

since most of the information being conveyed is already stored in

the mind of the reader. When processing text, the mind references

the meaning of each of the language elements and constructs a

new idea from the combination of many previously understood

ideas. Unfortunately, most text-based programming environments

stray too far from the standard syntax and vocabulary of written

language and fail to capture any of this incredible intelligence.

Instead, the user must learn an entirely new language, with a

foreign syntax and strange vocabulary.

 The processing of visual imagery is quite unlike the pro-

cessing of text. While a person may choose not to read a block

of text, he or she cannot turn off the neural mechanism which pro-

cesses images into concrete objects and relationships. This process

happens almost instantaneously and requires essentially no effort.

The result of the primary visual encounter may not necessarily

be a complete understanding, but will at minimum establish a

framework for understanding finer details and events within the

space. Additional visual processing can occur almost as quickly.

For example, one can consciously pick out all of the blue objects

in an image simply by scanning it from corner to corner. “Visual-

izations can expand [human] processing capability by using the

resources of the visual system directly. Or they can work indirectly

by offloading work from cognition or reducing working memory

requirements for a task by allowing working memory to be external

and visual.” [Bonar p.16] Programming systems which exploit this

natural visual intellect can shorten considerably the path to under-

standing.

2 : Context : 30

2.3 Modes of Synthesis

 This section presents a framework for the design of tradi-

tional visual programming languages. Every visual programming

language consists of a particular computational model and a par-

ticular visual interface for specifying programs in that model.

Computation can be generally cleaved into two related entities:

computational materials and computational processes. A visual

interface for specifying computation requires three ingredients:

a visual language, a method of construction, and a manner of

navigation. The two computational components and the three

components of visual interface are examined here in terms of

their respective modes. Rather than being strict taxonomies, these

modes represent the most common instantiations of each of the

components. By selectively combining these modes, one may syn-

thesize the basic structure of almost any visual programming lan-

guage.

2.3.1 Computational Materials

 The various types of data that are processed by a program

comprise the materials of computation. The computational materi-

als available within a programming language are governed by the

intended use of the language. Naturally, domain specific languages

(such as Macromedia’s Lingo or Pixar’s Renderman Shading lan-

guage) deal with a domain-specific set of materials. These materials

will often have their own set of primitive operations which are

built directly into the syntax of the language. For example, in the

Pixar language, colors may be added and subtracted as if they were

numbers. In addition to special material types, domain-specific

programming languages usually include the standard materials of

general-purpose programming systems.

visual language + construction + navigation

visual programming language = computation + visual interface

materials + processes

2 : Context : 31

 General purpose pro-

gramming materials vary little

from one language to another.

Standard material types

include numbers, boolean

values, characters, strings, and

arrays or lists. The ability to

formulate higher-level

composite structures is an

essential aspect of any full-

fledged general purpose pro-

gramming environment. Of course, once data abstraction is

possible, any kind of material is theoretically representable. Still,

having an extraordinary material as a basic primitive of the lan-

guage can make writing programs for the system a much smoother

process. Furthermore, in a visual programming language, only

primitive materials are visualized in their native representation,

while constructed materials are visualized in terms of their parts.

2.3.2 Computational Processes

 The modes in the domain of computational models have

been examined in many prior theses [Travers 96], so the discussion

here will remain brief and relevant to this thesis. The five most

common computational models are: imperative, functional, proce-

dural, object-oriented, and constraint-based.

 As its name suggests, the imperative model deals with

the execution of commands. The computer behaves as an active

servant which can execute any sequence of commands in order.

These commands generally direct the servant to act upon a set of

computational materials which are always at the servant’s disposal.

These intransient materials are called state, and their existence is

the most significant feature of the imperative model. The Turing

Machine was one of the first imperative models of computation.

 Unlike the imperative model, the functional model of com-

putation exists without state. This does not mean that the func-

tional model is without materials, but rather that the materials

which are used are transient. The functional model is based

around functions which transform (or map) input values into

General Purpose Domain Specific (eg.)
number (int) color
number (float) sprite
boolean account
character transaction
string equation
array imaginary number
list particle
composite etc.

computational materials

2 : Context : 32

output values. These values are the materials of a functional lan-

guage. One interesting aspect of a functional programming lan-

guage is that every expression within the language results in a

value. (This is not true of imperative languages in which a com-

mand may change the state but have no output value per se.)

In a purely functional programming language, an entire program

consists of one function, which may be the composition of several

sub-functions. Any materials which are not included or referenced

by the outputs of a function are lost after the computation occurs.

Church’s Lambda calculus served as the basis for the design of

modern functional languages.

 The procedural model of computation combines the imper-

ative and functional models and is the model used by most modern

programming languages. This model introduces the procedure,

which is essentially a function, complete with inputs and outputs,

but with the added ability to perform commands that change

the state. With the inclusion of state, one can no longer rely

on a function, when given the same inputs, to return the same

outputs. When using a procedural programming language, one may

choose to use a subset of the language to write a purely functional

program, or to write a purely imperative program. For almost two

decades, procedures were the dominant means of abstraction in

software development. Most of the visual programming languages

created for this thesis utilize the procedural model.

 Over the past decade, the procedural model of computation

has given way to the object-oriented model, which builds on the

imperative
execution of sequential commands on intransient material (state)

functional
calculation of mathematical functions that map inputs to outputs (without state)

procedural
combination of imperative and procedural in which functions can affect state

object-oriented
simulation of interactions between objects that contain state and procedures

constraint-based
continual maintenance of truth of logical statements and rules

computational processes

2 : Context : 33

procedural model. The salient feature of object-oriented computa-

tion is the object, which is a collection of related data and proce-

dures. By associating procedures directly with data structures, the

object-oriented model provides a very strong basis for the simula-

tion of real-world events. In fact, the origin of object-orientation

is in research on languages for simulation. These original models

were called actor-based and then later agent-based and message-

based models. The object-oriented model which grew out of these

experiments is currently the dominant model of computation for

software development. While procedures are still used within

objects, it is the objects that now provide the primary means of

abstraction.

 The last model of computation, the constraint-based

model, is not an extension of previous models, but an entirely

separate model unto itself. When programming in a constraint-

based language, one specifies a series of statements or expressions

that must remain true throughout the course of the program’s

execution. For example, one may specify the constraint that a

square must have equal length sides. Then, during execution, if

one of the sides is changed by the user, the other side will adjust

so that the statement remains true. In order for constraint-based

systems to run, they must constantly compare the current state to

the set of constraints and find solutions to make the whole system

true. Needless to say, this is computationally intensive. A less

general and less demanding method of constraint is the “predicate-

consequent” statement, since the solution is always in the code.

Constraint-based systems which rely on “predicate-consequent”

statements are called rule-based systems. The most well-known

constraint-based language is Prolog.

2.3.3 Visual Languages

 While there appears to be a wide variety of design styles

across the breadth of visual programming languages, almost all

systems employ one of a few common modes of visual language for

specifying computation. They are containment-based languages,

connection-based languages, and matching-based languages. For

completeness and clarity, two text-based programming languages

will be presented alongside these visual languages. These text-

2 : Context : 34

based examples should be viewed as visual entities as well.

 The two text-based languages examined here are Scheme

and C. Most text-based programming languages visually resemble

one of these two languages, since they represent two basic modes

of syntax. Of the two, Scheme (Figure 2.3.3.1) has

the much simpler syntax. Scheme utilizes a strict

prefix syntax (e.g. “(+ 1 2)”) and relies solely

on parentheses for punctuation. Multiple sets of

nested parentheses define the visual appearance of

scheme code, which is often afflicted by a build-up

of parentheses at the beginning and end of the

procedures. Most scheme editing environments perform automatic

indentation of the code, such that more deeply nested statements

appear farther to the right.

 C code (Figure 2.1.2.2) has a more complex texture than

Scheme code due to C’s varied use of punctuation in its syntax.

statement

sc
hem

e

C co
ntro

l-f
lo

w

co

nta
in

m
en

t

co
ntro

l-f
lo

w

co

nnec
tio

n

dat
a-

flo
w

m
at

ch
in

g

sequence

conditional

repetition

procedure

(set! A 2)

(begin
 (set! a 2)
 (set! a 4)
 (set! a 6))

(if (= a 2)
 (set! a 4)
 (set! a 6))

(do
 (i 0 (+ i 1)
 (sum 0 (+ sum i))
 ((= i 5) sum)))

(define
 (proc a)
 (+ a 2))

proc(int a)
{
 return a+2;
}

while(i<5)
{
 i++;
 sum += i;
}

if (a==2)
 a = 4;
else
 a = 6;

a = 2;
a = 4;
a = 6;

A = 2; A = 2

a = 2

a = 4

a = 4

a = 6

a = 6

while i<5

? 22A = 2

2 4 6
? 2a = 2

a = 3

a = 4

4

6

2 4

4 6

2 4

!2 6

a==2

a = 4

a+=2

i++

sum+=i

i<5

a = 6

a==2
2?

+2

+1

+
<5

?

i++

sum+=i

proc a
a += 2
return a

(define (fact n)
(if (= n 0) 1

(* n (fact (- n 1)))))

int fact(int n) {
if (n==0)

return 1;
return n*fact(n-1);

}

n==0

f=1

f=f*n

n=n-1

f

fact n
n==0

?

1 n* fact n-1

f

fact

-1 fact

choose

*

1

?=0n

Figure 2.3.3.1. Scheme imple-
mentation of factorial.

2 : Context : 35

C statements are terminated by semicolons. Functions are called

using parentheses with arguments separated by commas. Arrays

are indexed with square brackets. Structure ele-

ments are accessed with periods and sometimes

even arrows (“->”). In fact, every punctuation

character on the keyboard, with the exception

of ‘@’ and ‘$’ can be found in the standard

C syntax. Punctuation provides boundaries for

the most common visual structure in C code,

the block, which is formed by enclosing code

inside a pair of curly braces. These nestable blocks, which resem-

ble Scheme’s nestable parenthetical statements, are used to define

data structures, functions, conditional statements, and loops.

 The nestable parenthetical and block structures of Scheme

and C provide the basis for the containment-based visual language.

Simply by treating the pairs of parentheses or curly braces as cor-

ners of a rectangle, one already has the basic

elements of a containment-based visual lan-

guage. The most well-known of many contain-

ment based systems is the Nassi-Schneiderman

diagram (Figure 2.3.3.3), which adds a few

enhancements to the simple rectangular model.

Containment-based systems were born out of a

desire to make programs more structured, and less spaghetti-like.

[Glinert p.152] The enforced structure of this visual language pre-

vents it from representing some computational processes.

 Connection-based visual languages offer a more free-form

and less structured visual language for specifying computation.

All connection-based systems have two basic components: nodes

and connections. In general, nodes are points or shapes which

exist in a two-dimensional plane, and connections are lines or

tubes which connect the nodes to each other. Flow-charts are one

the most common forms of connection-based system. They are

used as a basis for the two dominant visual programming models

to use a connection-based visual language. Glinert notes the rela-

tive merits of the flow-chart specifically:

(define (fact n)
(if (= n 0) 1

(* n (fact (- n 1)))))

int fact(int n) {
if (n==0)

return 1;
return n*fact(n-1);

}

n==0

f=1

f=f*n

n=n-1

f

fact n
n==0

?

1 n* fact n-1

f

fact

-1 fact

choose

*

1

?=0n

Figure 2.3.3.2
C implementation of factorial.

(define (fact n)
(if (= n 0) 1

(* n (fact (- n 1)))))

int fact(int n) {
if (n==0)

return 1;
return n*fact(n-1);

}

n==0

f=1

f=f*n

n=n-1

f

fact n
n==0

?

1 n* fact n-1

f

fact

-1 fact

choose

*

1

?=0n

Figure 2.3.3.3
Nassi-Schneiderman imple-
mentation of factorial.

2 : Context : 36

Flowcharts seem to have been around forever. The unique strong
point of this representation is that the meaning of a simple flow-
chart is immediately clear even to those people who have never
seen one before. The disadvantage, of course, is that for larger
programs flowcharts tend to turn into the proverbial “spaghetti
ball” which masks logical structure.
[Glinert p.142]

 Control-flow diagrams (Figure 2.3.3.4) were pio-

neered by Von Neumann and were the first visual representa-

tion of computation to make use of a connection-based visual

language. These diagrams are semantically similar to contain-

ment-based diagrams and are based upon on an imperative

model of computation. Hence, they focus on controlling the

sequence of commands that are executed by the computer.

Specifically, nodes contain commands to be executed, and

connections guide the flow of execution from one command

to the next. “Control-of-flow diagrams are usually preferable

when emphasis is to be placed on the agents (things per-

forming acts) of a computation than on the objects (data)

being manipulated.” [Glinert p.176] Process structures such as

branches and loops are especially well-represented by control-flow

diagrams.

 Data-flow diagrams (Figure 2.3.3.5) are the other significant

model of computation to use a connection-based visual language.

Data-flow systems are more reflective of a functional model of

computation. Nodes in a data-flow dia-

gram represent functions with inputs and

outputs. Unlike text-based functional lan-

guages, data-flow functions can easily

support multiple outputs, in addition to

multiple inputs. Connections in a data-

flow diagram serve as pipelines through

which data flows from the output of one

function to the input of another. Of all the

visual models of computation examined so far, data-flow diagrams

are the only systems which provide an explicit place for the dis-

play of material data.

 There is one final visual language that is quite different

from the modes described above. Matching-based system are gen-

erally used to specify rule-based computational systems. These

(define (fact n)
(if (= n 0) 1

(* n (fact (- n 1)))))

int fact(int n) {
if (n==0)

return 1;
return n*fact(n-1);

}

n==0

f=1

f=f*n

n=n-1

f

fact n
n==0

?

1 n* fact n-1

f

fact

-1 fact

choose

*

1

?=0n

Figure 2.3.3.4
Control-flow implemen-
tation of factorial.

(define (fact n)
(if (= n 0) 1

(* n (fact (- n 1)))))

int fact(int n) {
if (n==0)

return 1;
return n*fact(n-1);

}

n==0

f=1

f=f*n

n=n-1

f

fact n
n==0

?

1 n* fact n-1

f

fact

-1 fact

choose

*

1

?=0n

Figure 2.3.3.5
Data-flow implementation of factorial.

2 : Context : 37

visual language use two-column tables which contain inputs or

predicates in the left column, and outputs or consequents in the

right column. This two column structure may be rearranged visu-

ally to be more compact, but will still have the same basic topol-

ogy. Much like data-flow diagrams, matching diagrams are focused

on the material data used within a computation.

2 : Context : 38

2.3.4 Construction Modes

 Once a visual language of computation is established, the

programmer must have some way to compose or construct pro-

grams using this language. This section presents four standard

modes of construction: free-form text editing, syntax-directed

text editing, free-form visual construction, and structure-directed

visual construction.

 The oldest but still most popular envi-

ronment for creating programs is the free-form

text editor (Figure 2.3.4.1.) With this mode of

composition, the programmer creates a text-

based program letter by letter. The main input

device is the keyboard, with occasional use of

the mouse to select and move text. One program

may be spread across several files which are

accessed as separate and distinct entities.

 In a standard free-form text editor, a programmer may just

as easily type “Mary had a little lamb” as he or she could type

a syntactically correct program. More to the point, free-form text

editors allow documents to be created which are not, in fact, run-

nable programs. This is the case because the level of representa-

tion of the text editor is “beneath” the level

of representation of text-based programs.

Programs are not made of individual let-

ters. They are made of words and numbers

and punctuation marks. These parts are

called syntactic tokens and they are

the building blocks of syntax-directed edit-

ing environments. A syntax-directed edit-

ing environment (Figure 2.3.4.2) can be

thought of as a text-editor which automati-

cally constrains the programmer to only

construct syntactically correct programs. Since the editor has

knowledge of the syntax the language, it can also suggest program-

matic statements based on the current state of the program com-

position. Szwillus recalls the general benefits of syntax-directed

editors:

Figure 2.3.4.2 A syntax directed text editor.

Figure 2.3.4.1. A free-form text editor.

2 : Context : 39

Programmers at all levels of expertise can benefit from the typing
time saved, the formatting, the error detection and, most signifi-
cantly, the ability to conceptualize at a higher level of abstrac-
tion rather than focusing on the language details. Since the
user interacts with editor in terms of language constructs, the
means of expression is, in theory, closer to the programmer’s
understanding of the task. [Szwillus p.3]

 Since syntax errors are the most common type of program-

ming error, the features of a syntax-directed programming environ-

ment would seem to be a windfall for all programmers. Despite this

logic, syntax-directed editors are viewed as tools for novices, and

as too burdensome for professional programmers.

 Obviously, a text-editor is the wrong tool for programming

in a visual language. A drawing program may seem like the most

natural interface for doing such programming. One could reference

pictures of commands in a book and freely draw those commands

on screen using a pen-based interface. In fact, there are several

experimental visual programming languages which allow the pro-

grammer to do just that. A great deal of research has focused

on recognizing hand-drawn computational diagrams. Even if this

research succeeds, however, free-form drawing-based editors will

have the same problem as free-form text editors: one may just

as easily draw a picture of Mary and her little lamb, as draw a

syntactically correct program. No doubt, the compiler would be

confused.

 The equivalent of syntax-directed editors for visual pro-

gramming languages are structure-based editors. Structure-based

editors deal with concrete visual objects, rather than hand-drawn

pictures. The objects often take the form of literal building blocks,

which may be found in a small onscreen library or may be gener-

ated through context-sensititve menus. Construction with these

language objects is usually as simple as dragging and dropping

them into place. Connections may be formed by drawing a line

from one object’s ports to another. Objects that work together may

visually suggest their compatibility through their color or shape.

Structure-based editors may also have built-in visual syntax check-

ers which can prevent the construction of a non-functional pro-

gram. Most visual programming languages and all of the languages

created for this thesis are structure-based visual program editors.

2 : Context : 40

2.3.5 Navigation Modes

 During the process of construction and afterward, a visual

program must be observed and examined. Since all but the small-

est of programs require more space than is available on one screen,

there needs to be a means for navigation of the program space.

 In a text-based or other one-dimensional representation,

the most common means of navigation is scrolling (Figure 2.3.5.1.)

Scrolling simply involves moving in a

linear and continuous fashion about a verti-

cal space. In a two- or three-dimensional

system, scrolling becomes panning. When

panning in a three-dimensional space, the

motion of the pan must always be lateral

(i.e. in the same plane as the image.) Scroll-

ing and panning allow a document of any

size to be viewed one screenful at a time.

 In addition to panning, the other standard

navigational technique is zooming (Figure 2.3.5.2.) In a one or two-

dimensional system, zooming refers to the magnification of the

onscreen image. Zooming may be used to examine the intricacies

of a program, or to the view the whole program at once. In a

three-dimensional space, zooming can be accomplished by moving

the virtual camera along the direction perpendicular to the image

plane. Obviously, when the camera is further from the objects it is

capturing, those object will appear smaller in the image. Likewise,

objects will appear larger when the camera is closer to them.

 Panning and zooming are both linear and camera-relative

navigational techniques which are independent of the space in

which they exist and the objects within that space. Object-based

Figure 2.3.5.1.
Scrolling and panning.

Figure 2.3.5.2. Zooming with three levels of magnification.

2 : Context : 41

Figure 2.3.5.3.
Path-based and
object-based
navigation.

Figure 2.3.5.4.
Hierarchical navi-
gation through a
containment-
based hierarchy.

Figure 2.3.5.5.
Hierarchical nav-
igation through a
connection-based
hierarchy.

and path-based navigation (Figure 2.3.5.3) provide two alternatives

to the aforementioned methods. These methods rely on the notion

of a virtual camera which may be positioned about or directed

towards a specific point in virtual space. Object-based navigation

allows the user to move the current view with respect to objects

which appear on screen. For example, one may center the camera

on a selected object, and then rotate about it a full three-hundred

sixty degrees. Alternatively, path-based navigation allows the user

to move the camera along pre-defined paths through the virtual

space. These paths may be defined by the user or may be an

inherent part of the system.

 One especially significant instance of object-based naviga-

tion is the navigation of hierarchical structures (Figures 2.3.5.4,

2.3.5.5.) [Glinert p.174] Certainly, this is an intuitive combination

of organizational structure and navigational technique since it has

been used by almost all personal computer users for the past

decade. The general manner of hierarchical navigation is to begin

at a root node and then progressively open and close nodes to

reveal and conceal the child nodes. Semantically, this process of

opening nodes is similar to zooming inward, since smaller and

smaller pieces of the structure are revealed. Likewise, one may

think of viewing just the root node, as viewing the entire program.

Since one may simultaneously have a view of the top-most node

down to the many leaf nodes, hierarchical navigation remains

an extremely efficient means to navigate a potentially enormous

information space.

2 : Context : 42

2.4 Graphic Design in Visual Programming

 Ironically, graphic design has played little part heretofore

in the field of visual programming. One need look no further than

the covers of the major journals in the field to discover that graphic

design is not a primary concern. Given that visual refinement

has not been an objective in the past, it is necessary to answer

the question of why aesthetics is a worthwhile goal for visual

programming languages now. There are three reasons: improved

communication, improved working environment, and improved

perception of programming.

 It is no secret that better visual design enhances the overall

effectiveness of a message being conveyed. Newspapers, maga-

zines, websites, and television programs all employ professional

graphic designers to better communicate their message. As another

visual medium, computer programs deserve no less. In fact, pro-

grams deserve even more attention since they are continually

generating new information and conveying it to the user. “Funda-

mental to the concept of visual languages is the conviction that

diagrams and other visual representations can aid understanding

and communication of ideas.” [Ichikawa p.121] Rather than being

designed by a person directly, these visual representations must

be formatted by the computer in real-time. For this process to

be effective, one must establish clear, coherent, and cogent visual

language. This visual language should be designed such that it will

remain clear, coherent, and cogent in all modes of presentation.

 Design is also employed to make environments more com-

fortable and pleasurable to be in. Few people would enjoy working

in a bright red room, with bright green floors, and bright blue

furniture. Yet this is the exact type of environment which has

existed for many visual programming languages. The other extreme

is the conservative black and white environment, which abandons

color altogether. Of course, color is just one of the visual properties

which contributes to the feeling of a space. Proper use of color,

scale, form, and composition of visual elements helps to create a

space in which one will be both contented and comfortable.

 Design can also be used to change the perception of the

programming process. More than being a practice of engineering

or science, programming is a craft. Like any craft, programming

2 : Context : 43

has its associated set of tools which make the craft possible and

represent the process of the craft to the external world. Most

people do not know how to make pottery, but they know about a

potter’s wheel. Likewise, most people do not know how to make

horseshoes, but they know about anvils. Painters have brushes,

chefs have pots, and weavers have looms. Programmers have a

computer, and on the computer screen they have code, which lies

flat and incomprehensible. Unlike the potter’s wheel, anvil, brush,

pot, or loom, code has no allure for the non-practitioner. When

people see most craftsmen (or craftswomen) at work, they tend to

stop and watch as if they were watching some kind of magician.

No one has ever stopped to watch a programmer write yet another

‘for’ loop. Design can change this. Design can make the beauty and

charm of computation apparent to non-programmers by altering

the tools of the trade.

3 : the Visual Machine : 45

Chapter 3 : the Visual Machine
Few programming environments have addressed the problem of
how to represent a program and its execution in an integrated
way. Often, there is no relationship between the representation
of a program and its execution: either the program execution
is not represented at all and we are only shown the results,
or the system uses two different visual vocabularies for source
and execution…A visual vocabulary that can represent both pro-
grams and executions can make understanding program behav-
ior simpler and allow debugging in the same environment in
which the program was created. [Freeman 1995]

Novices learn computer programming much more easily when
physical or mechanical models for computation are suggested
than when such analogies are not presented. This supports the
notion that a graphical programming language, in order to be
easy to learn, should bring a mechanical or physical model to
mind. [Glinert 1990]

3.1 Motivation for Model

 Since there is no commonly held notion of what computa-

tion should look like, one may look to the world of physical

machines for inspiration. Humans have, through their experience

with objects in the physical world, an extraordinary learned ability

to understand simple mechanical processes. While an eight-year

old may not instantly understand the idea of gear ratios, he or

she will have an intuitive understanding of how and why gears

work. The thought that one gear could turn without the other is an

impossibility in the eight-year-old mind. The cause and effect are

subconsciously coupled through vision. Tapping into this intuition

is the goal of the Visual Machine Model.

3.2 The Visual Machine Model

 A Visual Machine Language is a visual programming lan-

guage and environment which is able to visibly demonstrate

through a dynamic machine-like process the detailed progression

of the computation that it creates.

 One may also think of a Visual Machine Language as a set

of reconfigurable machines which act on a set of accompanying

materials, and which may assembled to form larger, more complex

machines. A language may be derived from the arrangement of the

machines, in which the allowable machine interconnections form

3 : the Visual Machine : 46

the syntax, and the machine operations form the semantics.

 The Visual Machine Model is an abstract recipe for design-

ing Visual Machine Languages. This recipe consists of two essen-

tial ingredients and one design principle.

3.3 Two Elements

 A Visual Machine Language requires the existence of both

material objects and machine objects, and a well-defined relation-

ship between the two.

3.3.1 Materials

 The materials of computation are rarely seen during the

process of computation. These materials are seen as they enter

the computation as inputs and as they exit the computation as

outputs, but are almost never actually seen while the computation

is occurring. Much like real-world materials, these computational

materials are susceptible to change. In fact, computational materi-

als are much more resilient than their physical counterparts. Never

will a computational material crack, or melt, or even become

scratched. Amazingly, computational materials tend to offer infi-

nite malleability without any perceptible damage to the material

itself.

 The visual representation of computational materials need

not be constrained. There are, however, some factors to consider

when designing such a representation. The most important aspect

of a visual representation is that it be able to adapt to change. Since

computational materials are constantly taking on new values, the

visual representation must change as well, while still maintaining

its identity as a singular object. Another factor to consider is com-

pactness. Creating representations which can accommodate one

thousand objects is much more difficult than doing the same for

one object. One last consideration in the design of computational

materials is the way in which materials can be connected and

combined. Materials which support simple recombination can be

used in a more fluent manner, than those which can only exist

in isolation.

3 : the Visual Machine : 47

3.3.2 Machines

 A computational machine is an object which processes

a computational material. Generally, this processing involves

making a change in a material. The simplest change a machine

can make (short of doing nothing) is to make the same change

in every material it encounters. More complex machines have

controls which affect how the machine operates and in turn

how the material is changed. In the real-world these controls are

usually set by humans who operate the machine. In the compu-

tational domain, however, most controls are connected to other

machines. Specifically, there are a class of machines which gener-

ate a machine response when exposed to materials configured in a

specific way. This response can be used to control other machines.

These response-generating “reader” machines are essential to the

computational process since they allow information to flow back

into the system of machines. They complete the feedback cycle.

 Obviously, the visual representation of the machine is key

to the success of a Visual Machine Language. The highest objective

of a Visual Machine is to demonstrate clearly to the viewer that the

machine is in fact making a change in a material. In a sense, Visual

Machines are the antithesis of the black box. Unlike the famous

black box, which hides all of its internal workings from the user, a

Visual Machine should clearly show exactly how its internals oper-

ate. One should be able to see, step by step, how the material is

changed between input and output. Of course, at some level, there

will be machines which are indivisible—which have no visible

internals. These machines should be explicit about exactly what

changes are being made to the material, and to the utmost degree,

suggest how that change was enacted.

3.3.3 Materials and Machines

 The relationship between computational materials and

machines is defined by the distinction between the two. Machines

are active. Materials are passive. Machines will not act unless there

is material to be acted upon. Likewise, materials will not change

unless they are acted on by a machine. Hence, materials and

machines are mutually dependent upon each other. This depen-

dency should be made clear within a Visual Machine Language.

3 : the Visual Machine : 48

3.4 One Principle

 The one design principle of the Visual Machine Model

is: that all changes in both machines and materials must happen

continuously in time. Maintaining continuity in a computational

environment is no simple task, since computation is quantized

into clock cycles, and since changes may occur discretely during

program execution. Control jumps from function to function. Vari-

ables change in the blink of an eye, and objects are created from

nothingness instantaneously. Hence, the notion of continuity goes

against the grain of computation. Still, continuity is essential to

the visualization of computation, for without it, one will quickly

become lost in the process.

 There are three aspects of continuity which must

be addressed: visual continuity, interactive continuity and

semantic continuity.

3.4.1 Visual Continuity

 Visual continuity refers to the gradual and uninterrupted

changing of the visual properties (color, form, position, etc.) of

both materials and machines over time. Visual continuity is neces-

sary since the human eye is not configured to follow discrete

transitions. “Fundamentally, smooth continuous animations…can

help…portray the individual operations of a process or algorithm.

Gradual updates allow people’s visual systems to easily perceive

and understand the changes. The updates also provide context

and facilitate tracking of patterns and actions.” [Kehoe] Therefore,

when designing a Visual Machine Language, an attempt should be

made to visualize discrete transitions as if they were continuous.

Transforming discrete processes into continuous processes is a

central tenet of this thesis.

 As a prerequisite for visual continuity, all machine and

material objects must exist in a unified visual space. A visual space

is unified if there is one viewing context, and if all objects within

the system have a clear spatial relationship to all other objects in

the system and are accessible to the user. A unified visual space

enables the continuous processing of an entire program without a

single visual context switch. Instantaneous visual context switches

(e.g. those in a windowed environment) destroy any semblance

3 : the Visual Machine : 49

of continuity which may have existed prior to the switch. When

such a switch occurs, one must spend several seconds or even

minutes reorienting oneself and reestablishing the spatial/semantic

mapping that existed before. Since such perceptual ruptures do not

occur in a unified visual space, navigation becomes a much more

free and natural process for the user.

 Another condition of visual continuity for Visual Machines

is that there be a single visual language used in the visualization

of both specification and execution. Changes in visual vocabulary

detract from visual continuity since the user must remap their

current understanding to the new representations. In order to mini-

mize this sort of discontinuity when moving from the specification

to execution, the visualization of the execution should develop

directly from the actual elements of the specification. This continu-

ous visual transition is possible since there is a single graphic lan-

guage in use. Additionally, a “uniform visual vocabulary simplifies

the process of analyzing a program’s behavior and eliminates the

necessity of learning a completely new set of commands to exam-

ine and debug a program execution.” [Freeman p.305] An overall

graphic coherency to a Visual Machine Language also adds to the

system’s predictability.

3.4.2 Interactive Continuity

 There are two basic modes of interaction for any program-

ming language: composition and execution. In a Visual Machine

Language environment, switching between these modes should

be a simple and continuous process. Even during execution, the

composition tools and the machine itself should remain interac-

tive, so that changes can still be made while the machine is run-

ning. Additionally, one should be able to control the speed of

execution, including being able to stop the machine and then set

it back running. This continuity of composition and execution is

designed to make the entire process of creating a program (writing,

running, debugging, etc.) a less fractured experience.

3 : the Visual Machine : 50

3.4.3 Semantic Continuity

 Semantic continuity refers to the perceived logical flow

of a programming system. Semantic continuity is lost when a

Visual Machine behaves unpredictably or illogically. For example,

an object should not instantaneously appear or disappear, or ever

appear in two places at once. If multiple representations are used

to represent a single piece of information, then all of those repre-

sentation should be encapsulated into a single object. Finally, in

objects which do change over time, there should be some part of

the object which remains stationary. Well-defined concrete objects

are an essential part of a well-oiled Visual Machine.

 During execution, semantic continuity depends on the con-

vincing presentation of cause and effect. Establishing a sense of

cause and effect is one of the most difficult tasks when designing

a Visual Machine. By preceding all events with a clearly visible

cause, the viewer will be more prepared to perceive and under-

stand an event when it occurs. Even if the cause is simply a notifier

of imminent change, having a moment to refocus in the right loca-

tion, will greatly enhance one’s perception of a smooth transition.

If cause and effect are used effectively throughout the system, one

will be begin to predict when and how changes will occur.

 For a visualization of computation to attain the greatest

degree of semantic continuity, it must be convincing. The user

must believe that the processes that are unfolding on screen are

actually happening. This does not mean that the visuals needs to

be photo-realistic or involve virtual reality. Rather, a better model

of synthetic, convincing images is a feature-length animated film.

While the viewer of these films knows that the images are not

“real,” this knowledge never interferes with the viewer’s belief in

the characters, or understanding of the plot. In the same manner,

a Visual Machine must be convincing in its presentation of the

interaction between machine and material.

4 : Design Experiments : 53

Chapter 4 : Design Experiments

 The Visual Machine Model defined in Chapter 3 lays the

foundation for the development of the five Visual Machine Lan-

guages presented in this chapter. These various design experiments

serve to establish a broad domain of systems which attempt to fully

manifest the Visual Machine Model. Each of the designs makes use

of a unique set of machines and materials to enable computation.

 The first Visual Machine, Turing, is a reinterpretation

of Alan Turing’s theoretical model for computation, the Turing

Machine. The Turing Machine’s concise computational model and

natural visual representation make it an excellent choice for a first

Visual Machine Language.

 The second Visual Machine, Plate, is based upon a tradi-

tional text-based programming language. Plate separates the textual

language into distinct syntactic elements and places each into its

own plate object. By treating the text in a graphical manner, Plate

enables novel means of program construction and consumption.

 Pablo, the third Visual Machine, draws upon the vertical

functional data-flow structure established in Prograph. This imple-

mentation is unique in that it actually displays the data that flows

through its connection paths. Pablo is also notable for its fluid

display of the calling of functions.

 Nerpa, like Plate, is based on a text-based language. In

Nerpa, however, that language is functional rather than imperative.

Nerpa functions are represented as hierchical polar structures,

which consist of code expressions on flat cards. These cards may

flipped to reveal an evaluated value on their back side.

 Unlike the four prior Visual Machines, Reverie is a pro-

gramming system specifically built for a gallery exhibition. This

design experiment attemps to connect references of addreseses in

memory with nonlinear jumps in the computational process. The

Reverie machine can be programmed with a single click.

 As a set, these five designs provide an inital platform for

testing the Visual Machine conjecture: that visible computation can

improve the ease of comprehension, construction, and consump-

tion of modern computational systems.

Machines Materials

4 : Design Experiments : 54

4.1 Turing

 Turing is a Visual Machine implementation of Alan Tur-

ing’s famous theoretical model of computation, the Turing Machine

[Turing]. Turing was created as an exploratory first attempt in

the domain the visual programming languages. While the Turing

Machine is far from an efficient means of computation, Turing

himself proved that theoretically any computation which could

be completed mechanically (i.e. by any computer), could be com-

pleted by the Turing Machine. Hence, the Turing Machine is a uni-

versal computer. The combination of universality and conciseness,

as well as the inherently visual model, made the Turing Machine

an excellent choice for a first visual programming language.

 The computational material of the Turing Machine is an

infinitely long one-dimensional tape which consists of an infinite

number of successive symbols from a finite alphabet. While

the Turing Machine specification allows for any alphabet of sym-

bols, the implementation pre-

sented here uses capital letters

of the standard Roman alpha-

bet (Figure 4.1.1). As a mate-

rial, the symbol tape (Figure

4.1.2) seems quite spare, even

though it can theoretically rep-

resent any structure. In this

respect, the material resembles

the eternally reconfigurable

binary material of modern

computers. Despite the limita-

tion of the Turing alphabet, the

tape is quite malleable. Any

symbol on the tape may be

changed to any other symbol

during execution. Theoreti-

cally the tape has a beginning, but no end. Of course, a real-world

Turing tape must eventually end due to the limitations of the host

computer’s memory.

 Although the formal conception of the Turing Machine

includes the tape as part of the “machine,” this discussion will

Figure 4.1.1. Three symbols must be chosen for every link.

4 : Design Experiments : 55

treat everything that is not the tape as the machine. Technically,

the machine is a finite state diagram. It consists of a set of abstract

points within the program, which are called states, and a set of

links between the states, which are called transitions. The states

are visually represented in Turing as circular nodes placed by the

user on a two-dimensional plane (Figure 4.1.2). There may be any

number of states in a Turing machine. Traditionally, the transitions

are simply represented as curved arrows which connect one state

to another. In Turing, these transitions still connect one state to

another, but the arrow has been reshaped into a more organic

form (Figure 4.1.2). Every transition contains three pieces of rel-

evant information: an input symbol, an output

symbol, and a direction for the tape to move.

The input and output symbols are chosen from

the same alphabet as the one used for the tape.

The direction is either left or right.

 Constructing a Turing program has the

feeling of drawing a computer. The screen

begins with a blank black slate except for the

half-inch high tape which extends from the

center of the screen to the right. When the user

clicks the mouse, a translucent circular state

is formed at the location of the cursor. Once

two or more states are formed, the user may

then hold the mouse down over any state and

begin drawing a transition to any other state.

The shape of the transition is primarily deter-

mined by the user’s gesture, but also by an

internal smoothing mechanism. The result is

a modified drawing experience in which the

transition is a live and active entity. Once the

mouse is let up, the transition is frozen into

place. The user may then program the three

elements of transition, by clicking on the transi-

tion form, and selecting the input and output

symbols as well as the direction from a circular

menu of options (Figure 4.1.2). Independent of

the dexterity of the user, the result is an organic

Figure 4.1.2.
Turing’s visual elements.

4 : Design Experiments : 56

blue and green web of connections. Since the Turing canvas is an

essentially infinite two-dimensional plane, the user is free to draw

out the Turing program so that it reflects his or her own mental

map of the program space. This may include the visual clustering

of functional units, and other self-imposed organizational tech-

niques (Figure 4.1.4). The user may navigate this computational

landscape via standard panning and zooming techniques.

 Prior to this point, the process has been one of specifica-

tion. Here is where the computation becomes visible. The mechan-

ical operation of the Turing Machine is relatively straightforward.

The machine begins with the tape rewound to its beginning which

appears at the center of the screen. A start state which is chosen

by the user lies on top of the first tape symbol. When the machine

is run, it examines the first symbol on the tape and the input

symbols of all the outgoing transitions from the start state. If the

there is a match between the symbol on the tape and any of the

input symbols, then that transition is selected, and the process of

transitioning begins (Figure 4.1.3). During the transition process,

the machine changes the symbol on the tape to the output symbol

of the selected transition, and then proceeds to fluidly move the

tape left or right depending on the direction indicated. Since

the machine is always aligned with tape, one perceives that the

machine is changing the material directly. While all of these events

are occurring, the machine smoothly propels itself to a new posi-

tion, such that the state at the end of the selected transition

becomes aligned with the next symbol on the tape. Both the cur-

rent symbol on the tape and the newly appointed current state

Figure 4.1.3. Computation of one Turing transition.

4 : Design Experiments : 57

now lie at the center of the screen, and the process repeats itself.

The current tape symbol is compared to the input symbols of the

outgoing transitions, a match is found, and the transition begins. If

no match is found, the machine simply halts.

 Running one’s Turing program simply

involves clicking on the play button at the

bottom of the screen. If the transitions are prop-

erly configured, the machine will begin to dance

about the tape, following the transitions, with

the locus of execution always centered squarely

on the screen. Meanwhile, the tape smoothly

shifts left and right to a regular rhythm. As the

symbols on the tape are changed, the previous symbol falls off of

the tape and then off the screen. While the machine is running, one

may adjust the speed of execution or even bring it to a temporary

halt. When the program ultimately halts, the machine literally

stops, and one knows the execution is finished. One may, however,

create loops in the machine, which may cause it to run forever.

As with any control-flow diagram, these loops simultaneously exist

both as visual and semantic entities. As Turing proved in the

1930’s, there are some Turing programs for which one can never

know if they shall eventually halt or run forever.

Figure 4.1.4.
An organizational technique.

4 : Design Experiments : 58

Turing Example A

The three images above show the construction of a Turing
program which recognizes an ‘L’ followed by any number
of ‘O’s, followed by a ‘P’. For example, “LP”, “LOP”, and
“LOOP” are all recognized by this program.

The three images below show the progressive execution of
the Turing program constructed in the images on the left. As
each letter is found, it is replaced by a blank space. When the
execution is complete, the tape will only have blank spaces.

4 : Design Experiments : 59

Turing Example B

The first three images display the
construction of a Turing program
which changes the word “TURING”
to the word “GENIUS”. The last two
images show the execution of the
program.

4 : Design Experiments : 60

4.2 Plate

 Just as Turing began with the Turing Machine model, Plate

began with a traditional text-based programming language as it

basis. The concept behind Plate is to make the syntactically dis-

tinct elements of a language into independent graphical objects,

called plates, which can then behave in a machine like manner

during execution. This textual machine processes computational

material which is visually located within the code itself. Unbe-

knownst at the time of creation, Plate is an example of a syntax-

directed editing environment.

 The material which is processed by Plate is the standard

set of computational data types of a modern programming lan-

guage. These include numbers, characters, boolean values, strings,

and lists. While Plate could be expanded to handle more complex

data types, these were the only supported types at the time of pub-

lication. The visual manifestation of these materials is a straightfor-

ward textual represenation. Given the graphic context of Plate,

representing the materials in a more visual manner would not be

difficult to implement.

 The machine components of Plate are the text-based pro-

gram plates (Figure 4.2.2). Plate is based upon a very simple imper-

ative text-based programming language similar to Pascal. Every

element of the language receives its own plate, for a total of about

ten distinct types of code plates. These code plates act like tem-

plates or forms into which other plates are placed. For example,

Figure 4.2.1. During step-by-step execution, the program layers are folded back.

4 : Design Experiments : 61

there is an assignment plate which reads “set _

to _” and which accepts a variable plate on its

left slot and an expression plate, constant plate,

or function-call plate on its right slot. There are

block-oriented plates such as the “if _ then _ else

_” plate which accepts a truth-valued plate in the

first slot, and any number of function or assign-

ment plates in the second and third slot. All

plates exist inside re-nameable function plates

which may called using function-call plates.

 Although the material and machine components of Plate

seem thoroughly traditional, the methods of interaction, visualiza-

tion, and evaluation gives the program a more machine-like feel. At

the heart of the Plate environment is the plate. Almost all plates

contain other plates. In fact, the only plates which contain no other

plates are constant value plates. Most plates are generated from a

contextual menu which is accessed from an already existing plate.

Once a plate is made, it may be dragged and dropped into an

empty space within another plates. For example, plates such as

the “set _ to _” assignment actually contain place-holder plates

for the two slots. These place-holder plates not only set aside a

space for a future expression, but they also can suggest a possible

expression via a contextual menu. Place-holder plates also serve

another purpose. They prevent wrongly typed expressions from

being placed in their slot. For example, if the user places a con-

stant number plate into the right-hand slot of the “set _ to _”

plate, the left-hand place-holder will only accept a number vari-

able plate. This interactive type-checking feature is uncommon in

most syntax-directed editors.

 Variable plates are quite special. Since variables are always

associated with a function, they are created from a contextual

menu at the top of all functions, which contains a list of variable

types. When a variable is created, a permanent version of the vari-

able is placed in a line of variables at the top of the function. While

this “original” variable may seem to serve as a declaration, its true

function is as a source of variable instance plates. By simply click-

ing on the “original” variable and dragging away, a user can make

an instance variable which can be placed anywhere within the

Figure 4.2.2. Plate’s visual elements.

4 : Design Experiments : 62

code. Once an instance is made, it will always be an instance.

Its identity cannot be changed to that of another variable. For-

tunately, if one changes the name of any instance variable, all

other instance names update simultaneously. Variable plates have

another secret feature—they contain values. If a variable is selected

and the ‘enter’ key is pressed, the plate expands to reveal the vari-

able’s value plate. This value itself

may be selected and changed.

All instances of a variable

show the current value of

the variable when expanded.

This feature allows conve-

nient access to all of the com-

putational material which is

stored by the program.

 Plate has two modes of execution: full-

speed and step-by-step. The details of the computation are visible

in both modes, though they change rapidly during full-speed exe-

cution. When the program is run at full speed, the entire program

is executed once per frame. This strange execution model has

some nice side-effects. One is that building a plate program which

creates an animated graphic is unusually simple. Another side-

effect is that when the program is changed during execution, the

update in the behavior of the program occurs instantaneously. For

example, one can quickly understand the effects of a repeat loop,

simply by changing its bounds.

 When the program is run step-by-step, a wireframe evalua-

tion box moves from point to point in the program, highlighting

the locus of execution. If a block plate is collapsed, the internal

commands are treated as one step. Meanwhile, with each step, the

hierarchical layers of the program separate and fold outward into

the third dimension (Figure 4.2.1). This effect helps to concentrate

the users attention on the locus of execution, and to aid the user

in understanding how the program is constructed. During this

process, one may at any time expand a variable to see its current

value.

Figure 4.2.3. The program and its visual
output (the ring) exist in one visual space.

4 : Design Experiments : 63

Plate Example

This page documents the construction of a simple
Plate program which draws five squares.

First, an empty process is created.

Then, “draw rectangle” is selected from
the command menu.

A number is placed into the first slot
of the “draw rectangle” function.

The program is run. Note the square.

A “move to” command is added to the top
and a number variable is created for the
second slot.

The variable is expanded and its value is revealed.

A repeat loop is added to the process.

A new number variable is created for the repeat loop.

The program is run. Note the five squares.

4 : Design Experiments : 64

4.3 Pablo

 Pablo is a Visual Machine Language based on the func-

tional dataflow paradigm. The design of Pablo begins with the

model of dataflow as realized in the Prograph environment. While

Pablo resembles Prograph in its basic structure and semantics, it

also is home to several of its own unique innovations, including

the ability to visualize computation.

 The most innovative aspect of Pablo is the visual relation-

ship between the material and the machine during execution. In

traditional dataflow implementations, one makes the connections

through which the data theoretically flows during execution, but

one never sees the actual data flowing down the links (Figure

4.3.1.) Although this may seem unnecessary to some, it serves

several purposes. For the novice programmer, it reinforces the

conceptual model behind data flow as well as parameter passing.

For all programmers, it provides immediate and well-placed access

to all the material data that is manipulated by the program. This

not only includes the material data at the inputs and outputs, but

all of the intermediate data that is generated along the way. In a tra-

ditional development environment, much of this data would never

be seen, unless hunted down in a separate debugging environment.

As with Plate, all the data is accessible, and all of it is exactly

where one would expect it to be.

 In traditional functional dataflow environments, functions

exist inside windows and function calls are dislocated entities

Figure 4.3.1. Animation of an evaluation of an addition computation.

4 : Design Experiments : 65

which remotely reference the original. Within Pablo all functions

exist in a unified visual space and there is no distinction between

functions and function calls. What is traditionally thought to be

a function call is created by dragging an instance of the called

function into the calling function. This creates a collapsed copy

of the called function within the calling function. When inside

the calling function, one may make connections to the in-ports or

away from the out-ports of the newly introduced function. If this

collapsed function is selected and opened, it simply expands to

full size and moves directly to the right of the calling function

(Figure 4.3.2.) Meanwhile, all of the connections to and

away from the called function remain intact despite the

fact that function is expanded and outside of the original

function. This expansion process occurs automatically

during execution when functions are called. When a

function is finished, it collapses back into its caller’s

domain. The result of this rightward expansion is a clear

visual representation of the function stack (Figure 4.3.4.)

Of course, one may choose to stop the visual unfolding

and let the execution continue invisibly. When evaluat-

ing recursive functions with great recursive depths, this

option is quite useful.

 As with variables in the Plate environment, all

instances of a function remain identical in Pablo. During

the editing process, a given function may be represented

visually in two places at once, since two instances of

the function may be open at the same time. Fortunately,

when a change is made to any instance of a function,

that change is automatically reflected in all of the other

instances. Even during runtime, the execution may be

Figure 4.3.3 Visual language
elements in Pablo. From top
to bottom: a value, an inport,
an outport, a closed function.

Figure 4.3.2. Animation of a function call. Function A calls function B.

4 : Design Experiments : 66

paused for changes to be made.

 While most of the editing within Pablo takes place with

respect to the two dimensional plane of the screen, all Pablo

objects exists in a three-dimensional space. Functions may be

rotated to be viewed from the top, allowing multiple function

stacks to expand simultaneously in a star-like formation from a

single source function. Additional exploration of the three-dimen-

sional space has yet to be done.

 Within Pablo there is an explicit blocking and pooling

behavior which allows data to arrive asynchronously as well as in

bulk. For example, if only the first of two data values is present at

an addition function’s in-ports, then the system will wait for the

second to arrive. Additionally, if another value arrives at the first

in-port, an ordered pool will form at the port. When a value arrives

at the other in-port, the first value will be extracted from the pool,

leaving the second value to wait. When a second value arrives at

the second in-port, another addition will take place. This process

of blocking, pooling, and depooling occurs naturally within Pablo.

Figure 4.3.4. A recursive function demonstrates how the function stack is an inherent feature of the visualization.

Figure 4.3.5.
The twist and

untwist functions
allow multiple
values to pass

through one
thread.

4 : Design Experiments : 67

Pablo Example
This example shows the visualization of a recursive summa-
tion function. The recursive function is specified as in the
first frame, and an integer value 3 is loaded in as input. The
rest of the images are generated during the animation of the
execution. The final result of the summation from 0 to 3 is 6.

4 : Design Experiments : 68

4.4 Nerpa

 Nerpa is a Visual Machine Language which is similar to

Plate in that it is built upon a text-based language. The visual

aspects of Nerpa serve to replace the structural elements (i.e. the

parentheses) of a traditional text based language, while the text

provides the majority of the specific semantics. As with Plate, the

visual elements also provide a means for visualizing the computa-

tion within the language specification. The materials used within

Nerpa are essentially the same materials that are used in Plate.

Unlike Plate, which rests on an imperative model of computation,

Nerpa is a purely functional language.

 From a programmer’s perspective, the most interesting fea-

ture of functional languages is that every expression within the

program evaluates to a value. This is not only true of every com-

plete program expression, but also every subexpression within an

expression within a greater program expression. Knowledge of this

property was an inspiration for the Nerpa environment.

 In Nerpa, every programmatic expression exists on the

front side of a two-sided plate (Figure 4.4.2). On the back side of

every plate is the value which results the from the evaluation of the

expression on the front. Constant numbers, for example, have the

same value on both sides since the evaluation of a constant number

value is that number value. This is not the case for function calls in

which the expression on the front contains the text of the function

name and the back shows the value returned by the function.

Nerpa plates may be flipped to show their back or front at any time,

Figure 4.4.1. An animation of the evaluation of a simple arithmetic computation.

4 : Design Experiments : 69

prior, during, or after execution has occurred.

 The high-level visual structure of Nerpa is a simple hierar-

chical tree displayed in polar form, instead of the normal top to

bottom display. Every distinct tree represents one function, which

may take in as well as return values. The hierarchical tree is a

direct display of the expression hierarchy that is found in the

purely text-based functional language. The children of a Nerpa

plate represent the arguments (or inputs) to the operator or func-

tion found on the parent plate. This representation is similar to the

parse trees generated internally by text-based language compilers.

 An entire Nerpa program consists of a set of circular Nerpa

functions which may be placed at any position on the two-dimen-

sional plane. At the center of every tree is the root plate. The

final value returned by any function will exist on the back side of

the function’s root plate. Naturally, functions also take arguments.

Function variables are displayed dangling off the bottom of the

function circle. When one function calls another function, the

variables of the called function are the first expressions to be given

values. From here, the computation progresses inward.

 The inward progression of computation (Figure 4.4.1) is

central to Nerpa’s machine-like operation. When an operator is

about to process its arguments (which are its child plates), it pulls

the argument plates inward towards itself. Only once the argu-

ments have been pulled so far that they rest behind the operator

function, the operation takes place and the operator plate receives

a value on its back side. This inward collapsing process continues

until only the root plate is left showing, and it has a value on its

reverse side. Once the computation of the function is complete,

one may unwind the structure and examine each of the evaluated

values along the way. This form of debugging provides convenient

access to all the materials that are used during the execution.

Figure 4.4.2. A Nerpa plate may be flipped to show its value.

4 : Design Experiments : 70

4.5 Reverie

 In the process of creating the fully functional Visual

Machines described above, one less functionally-oriented Visual

Machine was designed specifically for an art gallery setting. This

piece, Reverie, was intended to communicate the idea of the Visual

Machine, and convey the essence of computation in its most mini-

mal form.

 The Reverie project evolved from a thought experiment

about the semantics of memory addressing and referencing, and

specifically, how those features facilitate instantaneous jumps

within an otherwise linear process. The relationship between the

reference of a memory address and a discontinuity within the

computation felt somewhat strained. The goal of Reverie was to

make a connection between the data that represented the process

and the actual progression of the computation. After some initial

sketch work, one solution was found and realized in Reverie.

 The material used in Reverie is essentially part of the

machine. The material is the code that the machine processes.

Interestingly, Reverie’s execution has no effect on the com-

putaional material. If the the execution did affect the material, the

result would be a self-modifying machine.

What is effected by Reverie’s execution is

the state of the execution itself. At the

heart of Reverie is the idea is that a pro-

gram is a machine which consists solely of

information.

 Reverie is a pure micro-computing

machine. It runs a thirty-two line pro-

gram, literally. The thirty-two lines are

stacked vertically with a calculated spac-

ing to form an exact square on screen

(Figure 4.5.1). Each line contains one

micro-address slider which takes on one

of thirty-two distinct values. The system is

programmed simple by clicking on any of

the thirty-two lines of “code.” When one

does so, the slider moves horizontally to

the closest of the thirty-two positions.
Figure 4.5.1. The white beam draws and arc
which references an addressed line.

4 : Design Experiments : 71

 The visual connection between the address sliders of each

line and the unfolding of the process is a long rotating beam

(Figure 4.5.1) which is anchored in the top left corner of the

square. The beam traces an arc (Figure 4.5.2) across the square,

which starts at the top line’s address slider position and arrives at

the left-end of a line within the stack. In other words, the beam

helps the address slider select the line that it is addressing. In

this model, addressing always occurs downward and with respect

to the line of the address. For this mahine to work, the lines

must wrap around the top and bottom of the square. While this

looping memory solution was functionally non-optimal, it enabled

the piece to run continuously regardless of configuration. This

property seemed appropriate for a piece to be shown in a gallery.

 Since Reverie revolves around the idea of a visual connec-

tion between material and process, it is not surprising that the

result resembles a mechanistic solution. This reference to indus-

trial contraptions wholly contrasts the discrete nature of compu-

tational machinery. While Reverie is far from computationally

compete, it set a precedent with its machine aesthetic and opera-

tion, which help to refine the idea of a Visual Machine.

Figure 4.5.2. Every step in the execution of Reverie is a cycle.

4 : Design Experiments : 72

4.6 User Testing

 Unfortunately, due to lack of time, formal user testing for

ease of use could not be conducted for the five design experiments.

Informal user testing has taken place for each of the systems.

 One setting in which all of the designs have been casually

tested is the weekly demo session for Media Laboratory sponsors.

During each of these events, a specific project is presented and dis-

cussed. Sponsors are allowed to interact with the project and often

provide valuable feedback. When the sponsor fails to understand

how the system works, then it is clear that the ease of use needs to

be imporoved. In general, both programmer and non-programmer

sponsors had positive reactions to most the of the Visual Machines.

Turing, Plate, and Pablo were particularly well received.

 More direct user testing was conducted for the Turing

Visual Machine. Turing was presented and used during a two-day,

six hour workshop for high school students at High Tech High in

San Diego, California. Most of these students had no programming

experience, and none had prior knowledge of the Turing Machine.

Approximately two-thirds of the students in the class were able

to work through several simple Turing problems, and a handful of

students successfully solved a few very difficult problems. The dif-

ficulty that the students faced was not in comprehending Turing’s

operation or even how to construct a program, but rather how to

think procedurally and to decompose the problem into its parts. To

the students, Turing was like a video game—simple to play with,

difficult to master. This is how programming systems should be.

 Independent testing and analysis of Turing, Plate, and

Pablo was performed by undergraduate research assistant (UROP)

Joy Forsythe, who had taken one computer science class (6.001) at

MIT. For each of the systems, Joy was given a brief introduction

(five minutes or less), which included at least one example pro-

gram. She was then asked to use the Visual Machines for several

hours and write down her thoughts. Joy was able to create several

significantly complex programs in all three systems. She was even

able to figure out many unexplained features of Pablo, simply

based on her own experimentation. These discoveries were made

possible not only by Joy’s intellect but also by the fact that she

could interact with the visible computation in real-time.

5 : Discussion & Analysis : 75

5.1 Successes

 The design experiments presented in Chapter 4 represent

first steps into the domain of Visual Machines. While none of them

is a complete programming system, their development as a whole

was successful in several respects.

5.1.1 Unification

 Every one of the experiments combined a means of both

specifying and visualizing computation in a single visual space

and with a unified visual vocabulary. The way in which the visu-

alization develops directly from the language of the specification

represents a genuine innovation. This unification of the two parts

mutually enhances both sides of the process. The specification

becomes easier to understand because it is informed by the visu-

alization, and the visualization is more comprehendible because

it maintains the representation of the specification. Since all of

this functionality lies in one continuous space, never is a context

switch or mental remapping required.

5.1.2 Maintenance of Continuity

 Much of the work in developing each of the Visual

Machines involved maintaining the feeling of continuity. In gen-

eral, this work was worth the effort expended. All of the designs

display a high degree of visual continuity. The position, scale,

form, and color of the objects always changes smoothly between

events. Specifically, the transformation of discrete computational

transformations into fully continuous visual transformations is

especially successful. Additionally, continuity of interaction is

well supported. One may freely switch between tasks such as

construction, navigation, or execution without a break in the flow

of the process. The results of this continuity are programming

systems that feel unconstrained, and visualizations of computation

that are ease to follow.

Chapter 5 : Discussion & Analysis

5 : Discussion & Analysis : 76

5.1.3 Aesthetic Approach

 While none of the five design experiments deserves a gold

medal for graphic design, they do represent a significant advance

of aesthetics within the specific field of visual programming. The

examples that were developed for this thesis were done so in

the context of an environment which earnestly values imaginative

and refined visual design. This factor alone separates the Visual

Machines from other work in the field. The amount of consider-

ation applied to the choice of the colors, visual forms, typography

and motion resulted in a series of programming systems that are

not only easy to use but a pleasure to see.

5.1.4 Variety of Computation

 In the early stages of the Visual Machine Model, it was

unclear whether the model would support many types of computa-

tion. Given the variety of the underlying computation models in

the experimental designs, it is clear that this is not a problem.

Within the five designs, there are implementations of imperative,

functional, and procedural models of computation. Certainly,

object-oriented and constraint-based computational models could

also be developed into a Visual Machine Language.

5.1.5 Integration of Evaluation

 The story of the development of the experiments is as

much a story of implementation as of design. One of the great

successes of the implementation story is the integration of evalua-

tion mechanisms directly into the visual language representations.

While many visual programming environments simply export text-

based code for compilation, the designs created for this thesis all

incorporate their own means of evaluation. The great advantage

of this approach is that all of the information about the syntax

and semantics of the language as well as the actual runtime com-

putation is available for immediate feedback through the visual

representation. If this were not the case, the visualization of the

computation would be nearly impossible.

5 : Discussion & Analysis : 77

5.2 Challenges

 In the process of developing the design experiments, cer-

tain issues arose again and again. These issues turned out to be the

real challenges in creating a Visual Machine Language that fulfilled

the Visual Machine Model.

5.2.1 Completeness vs. Concretization

 By far the greatest conceptual design challenge was to

imagine a system which addressed all the necessary parts of com-

putation. Many excellent potential designs were rejected because

they could not be extended to perform a complete computation.

Some designs focused too heavily on material while others were

concentrated entirely on the machine aspect. Even systems that

could handle both machine and material at the operational level,

had to be concerned with higher level process issues, such as how

material travels from one machine to the next. Fundamentally, the

difficulty lay in the process of concretization. Deciding what to

make concrete and what to leave as an implicit part of the compu-

tation proved to be a mind-wrenching process. Starting from a

pre-existing programming language ensured that a language would

be complete, but ultimately resulted in designs that were less

conceptually innovative.

5.2.2 Visual Causality

 The greatest visual design challenge was in creating

machines which imparted a sense of causality in their interactions

with the materials. Semantic continuity suffered. Of all the aspects

of continuity, ‘cause and effect’ was the most difficult to attain. Part

of the problem was that there are so few real-world references for

the mutation of abstract information such as numbers and strings.

Having values replaced rather than mutated was one solution to

this problem, but it had the unfortunate side-effect of generating

trash material. In most of the systems presented here, material is

changed when it and another object make contact. This “billiards-

style” visualization is passable, but still does not connote the

idea of real machine-like cause and effect. These critical events of

change should make the machine appear more like a real machine

and the material feel more like a real material.

5 : Discussion & Analysis : 78

5.2.2 Architectural Space

 The architectural use of space within all of the Visual

Machines suffered, not because of the difficulty of the problem, but

because it was often treated as an afterthought. The Visual Machine

Model itself is focused much more on the relationships between

pairs of objects (machines and materials), than on the relationships

between hundreds of objects. Most of the Visual Machines deal

with space in the same generic manner. They allow objects to

be collapsed to save screen space. Of course, when an object is

collapsed, not all of its information is being shown, A better use

of space would allow for a more organic and yet organized arrange-

ment of objects. It would be nice if the program felt like it was

more involved with the space—piercing, dividing, and wrapping

the three-dimensional volume. Finally, an improved navigation

system could be guided by the spaces between objects, rather than

locked into the standard set of axes.

5.2.3 Rhythm

 A less significant, but equally frustrating absence in all of

the Visual Machine designs is a lack of rhythm during execution.

A major component of real cartoon animation is the careful use

of time when composing motion. Distortion of time in cartoon

animation emphasizes the important aspects of a movement, and

prepares the viewer for imminent events. Repeated distortion of

time creates a beat around which structures may evolve. The same

kind of rhythm exists in real mechanical machines, especially

those with motors. Even without the sound effects, these machines

have a definite cadence. Perhaps, Visual Machines would feel more

machine-like if they had more of a pulse.

5 : Discussion & Analysis : 79

5.3 A Comparative Evaluation

 Since all of the Visual Machine implementations presented

in this thesis share a common set of goals, and exist under a

common model, it make senses to evaluate them with respect to

each other. In order to perform this evaluation, five axes were

chosen against which each machine was measured. One should

note that the axes are not intended to establish a taxonomy for

Visual Machines. Nor are the axes designed to be orthogonal. The

first three axes are defined by the metric used throughout this

thesis: ease of use. The first three axes are ease of comprehension,

ease of construction, and ease of consumption. The following two

axes relate specifically to the Visual Machine Model. Those axes

are Material-Machine Balance and Machine-like Feel.

5.3.1 Ease of Comprehension

 As discussed in Chapter 1, ease of comprehension relates

to the amount of work that is required to move from one’s

current understanding to a complete understanding of the system

being measured. Naturally, the Visual Machines with the simplest

models of computation require the least work to understand.

Both Turing and Reverie fit this description. The dataflow

model of Pablo makes it the easiest to understand of the

more fleshed-out programming systems. While the opera-

tors in Pablo may be arbitrarily complex, they are all mani-

fested by a common input/output style representation. Once

the user comprehends the basic connection model in Pablo, the

rest of the understanding should fall into place. Like Pablo, Nerpa

exhibits a common visual model for all operations. The difference

is that Nerpa is much more dependent on textual representations.

Additionally, there are many more discontinuities in Nerpa, espe-

cially during function calls. The Visual Machine which requires

more comprehendibleless comprehendible

5 : Discussion & Analysis : 80

the most work to learn is Plate. Plate’s text-based model and

various plate instantiations prevent its immediate comprehension.

Realistically, Plate is no easier to understand than any traditional

text-based programming language.

5.3.2 Ease of Construction

 Assuming that the semantics of a Visual Machine are

understood by the user, one can begin to measure ease of construc-

tion. Ease of construction is a measure of the difficulty involved

in actually creating the computation. This metric values systems

which minimize the number of steps involved in composition

and are free of obstacles along the way. Once again, the

simpler models of computation, Reverie and Turing, have

the upper hand. Of the two Reverie is significantly simpler

to use since the user need only to click the mouse once to

change the computation. Both of these Visual Machines utilize

a small number of highly constrained elements. Pablo shares a

construction method with Turing in that they both involve making

connections. The color-coded inports and outports of Pablo ensure

that this means of construction is simple, reliable, and free of

obstruction. When compared to freeform text-editors, constructing

programs in Plate is a quantum leap forward in ease of use. The

language level objects, automatic syntax-checking, and context-

sensitive code suggestion make Plate a wonderful tool for pro-

gramming in a text-based language. Unfortunately, constructing

programs with text will never be as simple as doing so with con-

nections. While this hurts Plate, it is devastating to Nerpa which

has none of the complementary construction features of Plate.

simple constructioncomplex construction

5 : Discussion & Analysis : 81

5.3.3 Ease of Consumption

 Of the three components of ease of use, the one that is most

affected by the visualization of computation is ease of consump-

tion. This metric measures how well seeing can lead to under-

standing within a visual programming environment. Pablo takes

the lead in this category. When a Pablo program is running,

the whole state of the program is plain to see. The flow of

data down the connections guides the eye when following

the execution. All of the material values are shown, and

even the function-stack is clearly represented. Far behind

Pablo, but still respectable is Plate. In this case, the text-based

representation helps. Even with code that is convoluted, one may

still read the function and variable names and gain some under-

standing of the what the program does. Additionally, Plate pro-

vides convenient access to the whole state of the program via

the values stored in the expandable drawers. Plate’s the three-

dimensional deconstruction of the layers of code serve to focus the

viewer on the exact code at hand. Unlike Plate, the text of Nerpa is

not in a readable format. The minimalist hierarchy of operations in

Nerpa is not always simple to parse. While the runtime visualiza-

tion of Nerpa’s computation greatly enhances one’s perception

of the flow of the program and the transformation of data, it is

not enough to make it highly consumable. The same minimalism

which afflicts Nerpa causes both Turing and Reverie to be incon-

sumable. While the minute transitions within each of these sys-

tems is simple to see and understand, the greater gestalt of the

running program is nearly impossible to capture. The result is

computation which is neither predictable nor memorable.

more consumableless consumable

5 : Discussion & Analysis : 82

5.3.4 Material-Machine Balance

 When interacting with a computational medium, it is best

to have equal access to both machine and material. A painting

program, for example, deals almost exclusively with the material,

but generally has no tools for building a machine. Most program-

ming environments, on the other hand, are concerned solely with

building a machine and ignore the material. The ideal Visual

Machine Language would have a perfect balance of the two. One

should be able to view and interact with any part of the machine,

and any part of the material, at any time during execution.

 The Visual Machines designed for this thesis are still too

machine-oriented. Of all the systems, only Nerpa achieves a perfect

balance between the two. The functional nature of Nerpa along

with the dual sided faces enforce the machine material balance.

For every bit of machine on one face, there is just as much material

on the back face. Pablo, Plate, and Turing are all slightly too

machine oriented. The tell-tale signs that a system is too machine

oriented are that the primary interface is for building machines,

and that the materials can only be found inside of the machines.

Reverie, on the other hand, is entirely too material oriented. How-

ever, given the direct connection between the materials and pro-

cesses of Reverie, it makes sense that materials are dominant, since

they effectively control the machine.

 Fortunately, designing programs that deal with the material

directly is easier than designing programs for building machines.

What is needed most is the integration of current material-editing

programs into computational environments. Obviously, there is

a still a long way to go before the machine-material balance is

achieved.

0.3 0.3 0.4 0.5 0.9

perfect balance
too much machine too much material

too much materialtoo much machine

5 : Discussion & Analysis : 83

5.3.5 Machine-like Feel

 The last axis examined here is a measure of aesthetics that

relates specifically to the Visual Machine Model. Machine-like feel

describe how well a Visual Machine Language imparts the idea of

an actual machine being run on actual materials. Of all the Visual

Machines, Reverie feels the most like a mechanical object. In

fact, one could implement Reverie with physical materials without

changing the design significantly. The machine and the materials

are so tightly coupled that they are difficult to separate. A similar

response is created by Turing. Given that Turing, the man, was

also inspired by mechanical machines, it is not surprising that a

Visual Machine implementation of the Turing Machine feels like a

real machine. The Turing tape is definitely the stronger of the two

parts in shaping the machine-like feeling. This feeling in Turing

is lessened by the freeness of the movement, and the lack of a

realistic cause and effect display when changing symbols. Despite

being highly diagrammatic, both Pablo and Nerpa do appear some-

what machine like. Pablo’s connections resemble cables which the

values slide down as if on an assembly line or sky lift. In Nerpa,

the continuous contraction of the diagram has the feeling of a

complex pulley system or collapsing camera iris. Nerpa’s flipping

faces are reminiscent of the letters on a train station’s ever chang-

ing schedule boards. Unfortunately, but predictably, the machine-

like feeling is almost nonexistent in Plate, due to its textual nature.

Alas, the notion of machine-like ‘word processor’ is not an idea

which has a real-world equivalent.

more machine-likeless machine-like

5 : Discussion & Analysis : 84

5.4 Future Work

 There are several viable directions in which the research

that was begun in this thesis could be continued. Each one of these

subdomains has enough unencountered material to be the subject

of another whole thesis.

 One rich area of research would be to refine the techniques

for visibly demonstrating the processes of computation. Specifi-

cally, the demonstration of cause and effect could use significant

improvements. This research could also incorporate more techni-

cal evidence from the field of perceptual psychology. Another

approach could make use of the refined techniques of traditional

character animation. Imbuing the computational elements with a

hint of intentionality might make the process feel more causal.

 The design experiments created for this thesis are closer to

functional sketches than complete programming systems. For each

of the systems, a great deal of work could be done to carry them on

the path to completeness. Certainly, one necessary line of research

could involve increasing the complexity and the scalability of the

Visual Machine Languages. If visible computation is ever to be

a part of a mainstream programming environment, there must be

more support that it is feasible and usable in a substantial working

system. Due to the complexity and scale of this work, this research

would be best done by a small group of researchers, rather than

just one person.

 One aspect of research which is absent from this thesis is

experimentation in the form of in-depth and formal user testing.

User testing, especially in the realm of user interfaces, is a labori-

ous but necessary process. While the testing with the high school

students and with the undergraduate researcher provided good

qualitative information, more scientific methods are necessary to

obtain results that are more verifiable. The ultimate test for a Visual

Machine Language is for it to be understood and usable after only a

brief demonstration of its capabilities.

5 : Discussion & Analysis : 85

5.5 Conclusion

 This thesis has demonstrated that making computation vis-

ible and interactive is not only a desirable goal but one that

may be attained. While the ease of use of such systems has not

been proven experimentally, general user interactions thus far indi-

cate that programming environments which visualize computation

could greatly improve the process of programming. Specifically,

computation could become easier to comprehend, easier to con-

struct, and easier to consume.

 Both traditional visual and text-based representations were

examined with respect to the three aspects of ease of use. Visual

representations were noted for their proximity to the programmer’s

internal model and capability to represent complex structures,

while text-based representations were deemed best suited for rep-

resenting natural language. Given the visual slant of the thesis, the

role of graphic design in the field of visual programming was then

discussed. Several reasons were given for the need for deliberate

and refined graphic design in visual programming systems.

 Working in the mode of graphic design, a conceptual

framework, the Visual Machine Model, was developed in order to

guide the development of the programming systems which would

make computation visible. This model described a specific breed

of visual programming systems, called Visual Machine Languages

which draw from the world of mechanical objects and processes

in order to represent computation concretely. A Visual Machine

Language consists of well-defined material and machine objects

which interact to perform computation. The Model also defined

the criteria of visual, interactive, and semantic continuity so as

to prevent the viewer from becoming bewildered during program

execution.

 With the Visual Machine Model as a backdrop, five design

experiments were designed and implemented to test the feasability

of the Model, and to serve as sample points in the domain. Each

of the five designs was based on a unique computational model

and specific visual language. The programming systems were cre-

ated such that the dynamic visualization of computation evolves

directly from the static visual specification of the computation.

5 : Discussion & Analysis : 86

 In general, the design experiments were successful as func-

tional sketches, in that they enabled simple programs to be written

within each of them. The integration of the program specification

and computation visualization in a unified visual space and with a

single vocabulary was particularly effective. The designs, however,

were far from perfect. The greatest visual design challenge was to

develop convincing causal reactions between the machines and the

materials, which impart the sense that the computational material

is being changed. Other shortcomings included the paltry use of

the three-dimensional space as well the lack of rhythm during the

program execution.

 The development of the Visual Machine Model and accom-

panying Languages suggest a future where a programmer could

craft computation in a manner befit-

ting the complexity of the task. No

would longer would the computa-

tion be hidden from the programmer.

No longer would the programmer be

separated from the program.

A : Prior Work : 88

Appendix A: Prior Work

A.1 Interactive Visual Programming Languages and Environments

 In this section, several intriguing visual languages and

environments will be presented. The examples that have been

chosen were selected because they represent innovative interactive

visual models of computation. While there are many integrated

development environments which are considered “visual program-

ming languages”, most of these still use text of their primary means

of representation. The focus here is on truly visual programming

languages.

A : Prior Work : 89

A.1.1 Prograph

 One of the most successful truly visual programming lan-

guages is Cox and Pietrzykowsky’s Prograph [Cox 1990], now dis-

tributed by Pictorius, Inc. Prograph is a visual, object-oriented,

data-flow language which makes use of many special constructs to

achieve a high degree of usability. Prograph iss unique in that it is

one of the few scalable visual programming languages.

 Since Prograph is a data-flow language, it is essentially

based on a functional model, with the exception of user-defined

persistent data. A function or method in Prograph consists of a

downward flowing network, which exists between an

input bar at the top, and an output bar at the bottom

(Figure A.1.1.1). Connectors which attach to the top

bar, define the input parameters of the function. Like-

wise, the output connectors lie along the bottom bar. A

method may have any number of inputs and outputs,

including none. One should note that Prograph makes

no use of named local variables.

 The graphic language of Prograph is relatively

straightforward. The designers of Prograph were cer-

tainly concerned with creating a clean and tidy

programming system. The design is simple and mono-

chromatic and follows in line with traditional Macin-

tosh user interfaces in its use of windows and icons

(Figure A.1.1.2.) Hexagonal icons represent classes. Tri-

angular icons represent data, network icons represent

code, and spheres represent persitent state. These icons

are used mostly in the navigation of the greater program

Figure A.1.1.1

Figure A.1.1.2

A : Prior Work : 90

space, which exists in a hierarchical stack of windows.

 The graphic language of Prograph’s functions consists

of nodes, connection points, and connections. Nodes resemble

narrow rounded rectangles, which contain function names, and

give additional visual clues about the node’s function. Connection

points are small circles that lie on the outer edge of the nodes,

and may be moved around its edge. Between connection points lie

connections, which are simply straight black lines.

 Prographs’s sophistication is the result of several carefully

designed features which augment the computational model. The

first such addition is the iteration construct. In a traditional data-

flow language, iteration is quite difficult due to the constraints of

feedback. Prograph, however, allows the use of a special iteration-

style function which automatically is executed once for each of

the items in an input list. Another unique prograph feature is

the syncronization connector. This is a special connector which

ensures that one function is executed before another when they

exist in parallel. This feature is necessary since Prograph is not a

pure functional language due to potential side-effects of functions.

 While Prograph is a highly effective programming environ-

ment for the intermediate or advanced programmer, it might too

difficult for the programming novice. The compactness of represen-

tation and the abstract nature of the whole system belie its ease

of use. Navigation of the whole program space could certainly be

more optimal. Since the modular data flow network is broken into

functions, each of which exists in its own window, one cannot

easily move quickly between two distant parts of the program.

Additionally, one cannot view the program in one visual space.

Finally, while Prograph claims to have an animated debugging

capability, it is actually a fast step-through of the evaluation, with

almost no actual animation. Despite these shortcomings, Prograph

represents a significant point of progress in the field of visual

programming.

A : Prior Work : 91

A.1.2 Pictorial Janus

 Of all the visual languages and environments presented

here, Pictorial Janus is the most relevant to this thesis. That is

because it is the only system that truly combines a visual program-

ming language with an animated program visualization, and uses

a single visual vocabulary. Pictorial Janus is a visual implementa-

tion of an obscure concurrent logical programming language called

Janus.

 The visual vocabu-

lary of Pictorial Janus is

not based around specific

shapes or icons, but rather

is concerned with the

topological relationships

between objects. There are

only two kinds of graphical

objects handled by the

system: closed contours and lines. [Duecker 2000] From these

primitives, one may construct higher-level semantic objects. The

central objects of Pictorial Janus are agents and messages (Figure

A.1.2.1, A.1.2.2). An agent is visually represented as a closed con-

tour with input ports on its exterior and rule objects in its interior.

Messages, which include constants

and list elements, are generally pill-

shaped and may contain values repre-

sented in textual form. Connections

between agents and messages occur

both explicitly as lines and arrows,

and implicitly as adjacencies between

objects. While the user may attach

names to the agents, the names do not

affect the computation.

 Remarkably, all the semantics of Pictorial Janus can be

stated in terms of the visual relationships between objects. In this

sense, it is a true visual language. The semantic model, while

concise, is somewhat abstruse. It has the flavor of both lambda

calculus and message-based systems. At the high level, agents act

in parallel and communicate back and forth via messages. The real

Figure A.1.2.1.

Figure A.1.2.2.

A : Prior Work : 92

computation, however, takes place inside the agents. Every agent

contains a set of rules. These rules resemble their container agent

in that they have the same input interface. The rules, however,

have constant values, called preconditions, attached to their input

ports (Figure A.1.2.3). If the input matches the precondition,

then the agent assumes a new subconfiguration defined by the

rule. [Stasko 2000] Once the subconfiguration

becomes the main configuration, a process of

linkage shortening occurs. This process effec-

tively pulls the input values through the com-

putation and turns them into output values. In

a sense, this can be thought of as the simulta-

neous binding of variables and evaluation of

expressions.

 By far the most appealing aspect of Pic-

torial Janus is its use of animation (Figure

A.1.2.4). While the static representation of the code specifies the

program, “the execution is the animation.” [Bonar 1990] All anima-

tions begin with the exact static visual representation of the code

as created by the user. From this point, the individual objects are

gently pulled across the two-dimensional plane by the continual

shortening of the agent linkages. Once all the linkage shortening

has occurred, a new rule is selected. Unfortunately, there is no

animation associated with the matching process or the rule selec-

tion. At this stage, the current agent dissolves, as the new subcon-

figuration is smoothly scaled

to take its place. The process

then repeats itself until either

there are no inputs left or

until no matching rules apply.

While the animation occurs

very smoothly, it is difficult to

follow since multiple objects

move at once. Certainly, addi-

tional time spent with the

system could raise one’s under-

standing to the level of intu-

ition.

Figure A.1.2.3.

Figure A.1.2.4.

A : Prior Work : 93

A.1.3 Incredible Machine

 The Incredible Machine is not a programming language,

per se. It is an educational video game which resembles a Rube

Goldberg fantasy. The game has a number of predefined puzzles

where the user is presented with a scene and is given

a set of parts to assemble and a goal, such as “Get

the ball into the basket,” or “Trap the mouse in the

jar.” The parts include standard mechanical fare, such

as gears, levers, and pulleys, as well as cats, mice,

cheese, bombs, balloons, and more. Each part operates

in a specific way which may be combined to solve a

problem. A sample solution might be to use a balloon

to lift the gate, so the mouse can escape, followed

by the cat which powers a treadmill used to generate

electricity to turn on a light bulb.

 The various interactions between the parts is

rather stunning. No part can accomplish any task on

its own. Almost all of the parts belong to a family

of working parts. There are the mechanical parts (gears, levers,

pulleys (Figure A.1.3.1)), the electrical parts (generators, lights,

motors), the food-chain parts (cheese, mice, cats), forcing parts

(fans, elevators, balloons) and finally structural parts (walls, tubes,

buckets and balls (Figure A.1.3.2)). These categorizations, however,

are never made explicit, since there are many parts which bridge

the categories. The motor and gener-

ator are both electrical and mechan-

ical. The cat, when running, can

power the generator. Then there’s

the alligator, which strangely has the

purpose of bouncing balls off of its

tail. There are certainly hundreds if

not thousands of possible intercon-

nections between all the parts. The

result is a space of millions of poten-

tial machines.

 From a computational perspective, one can begin to think

about each of the parts as being either of piece of data or a process.

The ball maps more closely to a piece of data since it is the object

Figure A.1.3.1

Figure A.1.3.2

A : Prior Work : 94

being manipulated, while the motor maps to a process. While all

of the part interactions are causal, they are not always predictable.

Hence, much of the game involves trial and error.

 Much like the classic Turing Machine, these machines have

one point of termination. As with any computation, the scene

must be reset or rewound before it can be run again. When the

goal is eventually reached, the game is over. Interestingly, there

is always more than one way to achieve the goal. Similar to any

other computation, a machine naturally has side-effects on the way

to achieving a goal. Unless the goal state and the initial state are

identical, which never occurs, there is always some change of state

along the way between the start and the finish. Though these side-

effects are secondary to the objective, they could be made central

to the computation, or even made into necessary sub-goals.

 Since The Incredible Machine is aimed at children and

young adolescents, the design of this game is cartoon-like. The

visual design of the game is complete and professionally executed.

Naturally, all of the interactions are animated. The animation is

based on a simple physical simulation (Figure A.1.3.3) so the

objects move fluidly, naturally, and continuously. That any person

age eight and older can easily the understand the process as it

unfolds is a testament to the quality of the animation. Given the

consideration and craftsmanship that has shaped The Incredible

Machine, it is not surprising that this educational game has had

such success.

Figure A.1.3.3

A : Prior Work : 95

A.2 Software Visualization

 A brother field to visual programming is the field of soft-

ware visualization. “The main difference between VP [visual pro-

gramming] and SV [software visualization] is the goal involved:

VP seeks to make programs easier to specify by using a graphical

(or “visual”) notation while SV seeks to make programs and algo-

rithms easier to understand using various techniques. “ [Kehoe

1999] Software visualization as a domain comprises two sub-

domains: program visualization and algorithm visualization. While

there has been some confusion as to the distinction between these

two domains, a recent authoritative source provides the following

definitions:

Program Visualization is the visualization of actual program code
or data structures in either static or dynamic form.

Algorithm Visualization is the visualization of the higher-level
abstractions which describe software. [Stasko 2000]

Perhaps a more realistic definition is that algorithm visualization

deals specifically with algorithms, and that program visualization

deals with everything else about a program.

A.2.1 Program Visualization

 Most program visualization software relies on dynamic

graphs called execution monitors to display the changing state of

a program as it is processing. “The primary tasks of an execution

monitor is to collect information about a program’s execution and

present that information to the user in an understandable way.”

[Jeffery 1999] Although this seems like the description of a debug-

ger, the two are not the same. Unlike a debugger, which is focused

on individual program steps and specific variable values, execu-

tion monitors use visual techniques to display a large amount of

data at once, which is collected over time or across the breadth

of the program. These monitors may display either data which

is harvested directly from the execution, or data about the execu-

tion which is synthetically generated after the fact. [Kehoe 1999]

Direct display and synthetic display are the two types of program

execution monitors.

A : Prior Work : 96

 Direct display monitors show data

which actually exists inside the

computer during the execution of

a program. This data includes the

value of any variable in the program

at any time. A common display is

to simply graph a variable value as

it changes throughout the course of

the program. Direct display moni-

tors may also display process data

which relates to the program. For

example, a monitor may graph the

progression of the program counter,

or in the case of an interpreted

language, the active line number.

[Jeffery 1999] This profiler-oriented

information can give one a sense of

how and when the different parts

of the program are used. The pro-

cess data which is available also

includes the function stack and any

values contained therein, such as the currently active function.

One common direct display monitor is a map of all the memory

used by a program and how it is allocated within the whole

memory space (Figure A.2.1.1.) Much of the work in direct display

monitors concerns not what data to show, but how to access

the data during execution without affecting the running program.

Since interpreted languages maintain more information about the

program during execution, they can provide much more data to the

direct display monitors with much less harm to the computation.

[Jeffery 1999]

 Synthetic display monitors show derived data—that is,

data which does not exist inside the computer during a program’s

execution. A synthetic display monitor may show data derived

from material data, such as the average value of variable over time,

or a histogram of the variable’s many values. Information derived

from process data can also be used, such as with a monitor which

displays the exact number of times that every function within a

Figure A.2.1.2. Synthetic display of procedure calls.

Figure A.2.1.1. Direct display of memory allocation.

A : Prior Work : 97

program is used (Figure A.2.1.2.) In fact, one common use of

synthetic display monitors is to count the number of times that

a specific action or sequence of actions occurs within a program.

A synthetic display monitor may also measure the total amount

of free memory and graph that value over time. The number of

possible options for synthetic display monitors is as large as the

number of functions that one could write to synthesize the infor-

mation. [Jeffery 1999]

A.2.2 Algorithm Visualization

 The great majority of the research that is done in the

field of software visualization is on algorithm visualization and

animation. “The original motivation for algorithm animation was

to explain an algorithm to an audience for educational purposes.”

[Jeffery 1999] Explaining algorithms is still the primary function,

with the secondary function being a tool for debugging. Since,

in most systems, one must construct a visualization on a per-

algorithm basis (Figures 2.5.2.1-3), these techniques are not

often used in debugging. “The dynamic, symbolic images in

an algorithm animation help provide a concrete appearance

to the abstract notions of algorithm methodolo-

gies, thus making them more explicit and clear.”

[Kehoe 1999] Because of the educational focus,

a majority of the published algorithm visualiza-

tion work deals exclusively with standard text-

book style algorithms.

 The trailblazing work in algorithm animation was done by

Marc H. Brown with his BALSA system. Brown formalized the

idea of “interesting events” [Zeus 1992] and how they are embed-

ded into the code of the algorithm being visualized:

An algorithm is annotated with markers that identify its funda-
mental operations that are to be displayed. These annotations,
called interesting events, can have parameters that typically
identify program data. Each view controls some screen real
estate and is notified when an event happens in the algorithm.
A view is responsible for updating its graphical display appropri-
ately based on the event. Views can also propagate information
from the user back to the algorithm. [Brown 1992]

Figure A.2.2.1. Closest pair visualization.

A : Prior Work : 98

 The notion of interesting events is important for two rea-

sons. First, the presentation of these events communicates to the

viewer of the algorithm the basic steps of the algorithm. They

also serve to establish an appropriate and efficient granularity for

processing the code which implements the algorithm. If

no such events are used, then there may be a flood of

unnecessary intermediate changes which may overload

the animation system as well as the viewer’s perceptual

capabilities.

 Almost all algorithm visualization systems utilize

animation. Even the original MacBalsa had basic anima-

tion capabilities. The goal of algorithm animation is

to show the structure of the data being manipulated

clearly, and animate the changes in the structure as

smoothly as possible. “The Tango algorithm animation

systems…emphasizes support for smooth animation

between states in the visualization in order to improve,

the quality of the animations and reduce the difficult

with which animations are programmed.” [Jeffery 1999

p.Citrin 1995] The Tango system developers introduced

a path-transition paradigm which enables the exact description of

an object’s movement at the right time during the visualization.

[Kehoe 1999] Strangely, when discussing animation, researchers in

the field are still quite conservative with respect to it usage, in

spite of the clear advantages.

Because smooth updates have durations, however, they are best
suited for illustrating the fine-grained operations of a process
working on a relatively small data set. If continuous animations
are applied to large systems or data sets, they may simply take
too long to occur and the viewer will become impatient. [Kehoe
1999]

Fortunately, modern computers are able to run algorithm anima-

tion software fast enough such that any number of transitions can

be visualized. Despite their instant appeal to all who witness their

animated progressions, animated algorithm systems have been crit-

icized for their applicability and for their effectiveness in improv-

ing learning. The simple argument against the applicability of

algorithm visualizations is that they must be constructed one at

Figure A.2.2.2. Packet routing
visualization.

A : Prior Work : 99

a time for each new algorithm. Additionally, the small set of ele-

ments and operators which one has access to when designing a

visualization can seriously limit what can be expressed.

The main focus of the traditional visualization systems is on how
to make concrete pictures, and they are customized for specific
application domains. Therefore, the existing visualization sys-
tems cannot be used for a wide range of applications...There is a
trade-off between expressiveness and generality of the visualiza-
tion. If more specific and concrete pictures are given to program-
mers to represent the problem, the visual representation tends to
be less general. [Koike 1991]

In addition to this debate, there is a whole other argument about

the correct way to embed or attach animation code to one’s pro-

gram code. Needless to say, it is always a taxing process, regardless

of the algorithm.

 Algorithm animation systems have been used extensively

as interactive software aids within undergraduate level algorithms

classes. Certainly, once one already understands the algorithm (i.e.

is an expert with respect to that algorithm), then the animation

generally makes much perfect sense. However, for a student who

comes to the algorithm without any understanding of its working,

the animation may not help. “Students just learning about an algo-

rithm do not have a foundation of understanding upon which to

construct the visualization mapping.” [Kehoe 1999] This

visual mapping from semantic

information to visual structure

is an essential part of diagram-

matic understanding. Without

a well-defined mapping estab-

lished prior to the viewing of

the animation, the viewer will

quickly become lost. Reinforc-

ing this mapping through a

process of construction may

help to alleviate this problem.

Figure A.2.2.3. Heapsort visualization.

B : Issues & Justifi cations : 100

Appendix B :
Issues and Justifications

 This section presents some theoretical issues which relate

to the context of the Visual Machine design.

B.1 Justification of Bottom-up Approach

 The programming systems which were designed for this

thesis implement relatively low-level, non-domain specific lan-

guages. The reasons for taking such a low-level and general

approach are twofold. First, the elements of computation which

are presented here exist in all programming languages. For exam-

ple, even the most high-level, domain-specific programming lan-

guage will require some implementation of conditionality. Second,

designing interactive representations of the low level machinery

presented here is usually the most difficult aspect of creating

a visual programming language. Doing the same, however, for

the domain specific elements of a language is a simpler process,

since these elements will most likely already have a natural visual

representation and set of interactions.

B.2 Justification of Absence of Metaphor

 The notion of the machine in the visual machine model

serves two purposes: it acts as a visual reference for designing a

dynamic system, and it acts as a philosophical model for thinking

about the relationship between process and material. Machines

should serve as a point of departure when designing a visual

programming language, but not should not necessarily be used

as a metaphorical object within the language itself. One should

note that the visual machine model does not specify the use of

metaphorical or analogical elements. Rather it simply specifies

the two parts of the system, their relationship, and a design prin-

ciple which describes their dynamics. While the objects within a

visual machine are meant to move, react, and change in a mechani-

cal fashion, they are not required to be metaphors for real-world

machines or any other real-world entities. The Visual Machine

Model is metaphor-neutral.

B : Issues & Justifi cations : 101

B.3 Literal vs. Magical Operation

 When discussing his Alternate Reality Kit (ARK), Randy

Smith of Xerox Parc recognized a “tension between the learnability

of literalism and the power of magic.” [R.Smith 1990] This discus-

sion is equally appropriate in the analysis of the Visual Machine

Model. Smith presents the argument as follows:

The designer of a system for use by novices can have great
advantages by basing the interface on a known metaphor. If
the computer behaves like a system already understood by the
user, the learning time will be greatly reduced. Interface features
that are true to the designer’s metaphor might be called literal.
The learnability of literalism makes it beneficial....However the
designer can always provide the user with enhanced capabilities,
assuming there is a willingness to break out of the metaphor.
These features allow the user to do wonderful things that are
far beyond the capabilities of literal features. Capabilities that
violate the metaphor to provide enhanced functionality might be
called magical. The power of magic is also beneficial. [R.Smith
1990]

Unlike the Alternate Reality Kit, the Visual Machine Model makes

limited use of real-world object metaphors. Hence, there are no

specific semantics which must be observed. Still, there is a literal-

ism in the behavior of the machines and materials which must

not be violated. In a sense, the Visual Machine Model sets up an

expectation of literal physical behavior. In order to support this

expectation, one must maintain continuity and the relationship

between material and machine, as well as exclude certain non-

literal (i.e. magical) operations. Magical operations in a visual

machine language include the instantaneous change of an object,

or changes that are made without a clearly visible causes. Choosing

between these magical options and literal behavior proved to be a

difficult process in the creation of each of the Visual Machines.

C : Implementation : 102

Appendix C : Implementation

 This section describes the basic methods of implementa-

tion for the five design experiments presented in Chapter 4. The

features of the Visual Machine presented here represent the major

building blocks as well as some of the finer details.

C.1 Underlying Architectures

 All five designs are hand-programmed in C++ (a text-based

programming language) and make use of the Aesthetics &

Computation Group’s proprietary ‘acu’ and ‘acApp’ libraries. These

libraries, which are based on the OpenGL and GLUT libraries,

serve as the underlying graphics, windowing, and event-handling

architecture for all five designs. The most significant aspect of this

architecture is that it supports continuous animation as a default

behavior. In fact, programs created with these libraries must com-

pletely redraw their display on every refresh of the screen. What

this means to the programmer is that there is no additional compu-

tational cost to animate an object versus having it remain station-

ary. In addition to supporting animation, the ACG libraries contain

methods for drawing anti-aliased text among other features.

C.2 Object Structures

 While there is little shared code between the five projects,

there is a basic object structure used by all the designs. Each sys-

tems deals with a set of custom language elements (such as Turing

nodes or Plate variables), which are represented as standard C++

objects. These objects maintain the identity of the language ele-

ment, the associated state, as well as connections that it may

have to other objects. These objects are also responsible for dis-

playing the visual representation of the respective language ele-

ment. In most of the designs, there is a master list of the top-level

objects and subordinate objects (such as Plates within Plates) are

maintained in a hierarchical tree structure supported the objects

themselves.

C : Implementation : 103

C.3 Interaction Methods

 To enable interaction, the systems always one maintain one

active (i.e. selected) object. This active object is the only object

that can be altered. When the active object is dragged away from

its current location, it is usually detached from the hierarchical

structure in which it rests. When the user releases the active object,

it is reattached to the hierarchical structure, perhaps in a different

location. When at rest, the active object may receive information

about the mouse position or keyboard activity in order to change

its own state.

C.4 Integrated Evaluators

 In all five Visual Machines, the evaluation methods are

always built directly into the language element objects. In a sense,

there is no distinction between the interface and actual functional-

ity, since the interface itself contains all of its own functionality.

This tight integration allows all of the state of the computation to

be directly accessible to the visualization. In general, the computa-

tion proceeeds in a bottom-up fashion through the hierarchical

structures. Since no parsing needs to be done (the grammar is

defined by the visual connections), the process is similar to evalu-

ating a pre-computed parse-tree. All intermediate data is stored

directly in the language elements, rather than in a set aside table.

The result is a relatively responsive and efficient means of evalu-

ation.

C.5 Discrete Transitions Made Continuous

 One of the most notable aspects of the Visual Machine

designs is the way in which discrete transitions become continu-

ous transitions during evaluation. This process is accomplished by

associating a continuous floating-point number variable with every

discrete transition. This variable is initially equal to 0.0 and slowly

progresses to 1.0 over the course of the transition. The number is

also used to determine the changes in position, color, and form

of the active object between the initial state and the end state.

Normally, these visual changes occur through a process of blending

between two known values. Only when the transition variable

reaches 1.0 will the next transition be processed. By adjusting the

C : Implementation : 104

size of the incrementation variable, one may control the speed of

the execution. An increment of 0.01 will require 100 frames while

an increment of 0.5 will requirest just two.

C.6 Instances

 Perhaps the most complex feature in all five Visual

Machines is the instancing that is used in Plate variables and Pablo

functions. An instance of an object essentially mirrors the state of

another object. For example, when a name is changed on one Plate

variable instance, all equivalent instances automatically update

their names because they are mirrring the same original variable.

Likewise, when a change is made to one Pablo function instance,

all other instances update themselves to reflect that change. The

difficulty in the implemenation of instances lies in the fact that all

instances have two sets of state: their local state, and their instance

state. The local state of a Plate variable is the plate’s position,

and whether it is expanded or collapsed. The instance state is

the name of the variable and the variable’s value. If an instance

and the original object become out of sync, then the instance is

responsible for updating it state. Doing this efficiently for complex

data objects, such as lists and structures, requires a well designed

architecture.

C.7 Platforms

 The development of the five Visual Machines took place

over a two year span, which was interrupted by many side proj-

ects. The first year of development was performed on an SGI

Octane, running the IRIX operating system, the EMACS text editor,

and the CC compiler. An Apple Macintosh G4 running Metrowerks

CodeWarrior served as the programming platform during the

second year of development.

References : 106

References
[Abelson 1996] Abelson, H and Sussman, G. Structure and Inter-
pretation of Computer Programs, MIT Press, Cambridge, MA, 1996

[Atwood 1996] Atwood, J.W, et al. Steering Program Via Time
Travel, Proceedings of the 1996 IEEE Symposium on Visual Lan-
guages, IEEE Computer Society Press, 1996.

[Bertin 1963] Bertin, Jacques. Semiology of Graphics: Diagrams,
Networks, Maps. University of Wisconsin Press, Madison, WI,
1983.

[Blackwell 1999] Blackwell, A.F, et al. Does Metaphor Increase
Visual Language Usability, Proceedings of 1999 IEEE Symposium
on Visual Languages, IEEE Computer Society Press, 1996.

[Bonar 1990] Bonar, J, et al. A Visual Programming Language for
Novices, appears in Princicples of Visual Programming Systems,
ed. Shi-Kuo Chang, Prentice Hall, Englewood Cliffs, New Jersey,
1990.

[Brown 1992] Brown, M. Zeus: A System for Algorithm Animation
and Multi-View Editing, Digital Equipment Corporation, 1992.

[Burnett 1999] Burnett, M. The Future of Visual Languages, Pro-
ceedings of 1999 IEEE Symposium on Visual Languages, IEEE
Computer Society Press, 1999.

[Card 1999] Card, S, et al. Readings in Information Visualization:
Using Vision to Think, Morgan-Kaufmann Publishers, San Fran-
cisco, CA, 1999

[Carlson 1995] Carlson, P, et al. Integrating Algorithm Animation
into Declarative Visual Programming Language, Proceedings of the
11th Symposium on Visual Languages, IEEE Computer Society
Press, 1995.

[Chang 1990] Chang, S.C, et al. Princicples of Visual Programming
Systems, Prentice Hall, Englewood Cliffs, New Jersey, 1990

[Citrin 1995] Citrin, W, et al. Programming with Visual Expres-
sions, Proceedings of the 11th Symposium on Visual Languages,
IEEE Computer Society Press, 1995.

[Costagliola 1997] Costagliola, G. et al. A Framework of Syntactic
Model for the Implementation of Visual Languages, Proceedings of
the 1997 Symposium on Visual Languages, IEEE Computer Society
Press, 1997.

References : 107

[Cox 1990] Cox, P.T, et al. Using a Pictorial Representation to
Combine Dataflow and Object-Orientation in a Language Indepen-
dent Programming Mechanism, appears in Visual Programming
Environments : Paradigms and Systems, ed. Ephraim P. Glinert,
1990.

[Demetrescu 1999] Demetrescu, C, et al. Smooth Animation of
Algorithms in a Declarative Framework, Proceedings of 1999 IEEE
Symposium on Visual Languages, IEEE Computer Society Press,
1999.

[DiSessa 2000] diSessa, A. Changing Minds: Computers, Learning
and Literacy, MIT Press, Cambridge, MA, 2000

[Duecker 2001] Duecker, M, et al. An Introduction to Pictorial
Janus, <http://jerry.c-lab.de/~wolfgang/PJ/introduction.html>,
Heinz Nixdorf Institut, 2001.

[Edel 1990] Edel, M. The Tinkertoy Graphical Programming Envi-
ronment, appears in Visual Programming Environments : Para-
digms and Systems, ed. Ephraim P. Glinert, 1990.

[Freeman 1995] Freeman, E, et al. In Search of a Simple Visual
Vocabulary, Proceedings of the 11th Symposium on Visual Lan-
guages, IEEE Computer Society Press, 1995.

[Gardin 1989] Gardin, F. and Meltzer, B. Analogical Representa-
tions of Naive Physics, Artifical Intelligence, 38, Elsevier Science
Publishers, 1989.

[Geiger 1998] Geiger, S, et al. SAM - An Animated 3D Programming
Language, Proceedings of the 1998 IEEE Symposium on Visual
Languages, IEEE Computer Society Press, 1998.

[Glinert 1990] Glinert, E. Pict: An Interactive Graphical Program-
ming Environment, appears in Visual Programming Environments :
Paradigms and Systems, ed. Ephraim P. Glinert, 1990.

[Glinert 1990] Glinert, E. Non-Textual Programming Environments,
appears in Princicples of Visual Programming Systems, Shi-Kuo
Chang, editor, Prentice Hall, Englewood Cliffs, New Jersey, 1990.

[Gooday 1996] Gooday, et al. Using Spatial Logic to Describe Visual
Languages, 1996.

[Griebel 1996] Griebel, P, et al. Integrating a Constraint solver into
a Real-Time Animation Environment, Proceedings of 1996 IEEE
Symposium on Visual Languages, IEEE Computer Society Press,
1996.

References : 108

[Haarslev 1995] Haarslev, V, et al. Visualization of Strand Pro-
cesses, Proceedings of the 11th Symposium on Visual Languages,
IEEE Computer Society Press, 1995.

[Haarslev 1995] Haarslev, V. Formal Semantics of Visual Languages
Using Spatial Reasoning, Proceedings of the 11th Symposium on
Visual Languages, IEEE Computer Society Press, 1995.

[Heltulla 1990] Heltulla, E, et al. Principles of Alladin and other
Algorithm Animation Systems, appears in Visual Language and
Applications, ed. T. Ichikawa, Plenum Press, New York, 1990.
[Huang 1990] Huand, K.T, Visual Interface Design Systems,
appears in Princicples of Visual Programming Systems, ed. Shi-
Kuo Chang, Prentice Hall, Englewood Cliffs, New Jersey, 1990.

[Ichikawa 1990] Ichikawa, T, et al. Visual Language and Applica-
tions, Plenum Press, New York, 1990.

[Igarashi 1998] Igarashi, T, et al. Fluid Visualization of Spreadsheet
Structures, Proceedings of the 1998 IEEE Symposium on Visual
Languages, IEEE Computer Society Press, 1998.

[Jeffery 1999] Jeffery, C.L. Program Monitoring and Visualization:
an exploratory approach, Springer-Verlag, New York, 1999.

[Kahn 1996] Kahn, K. Seeing Systolic Computations in a Video
Game World, Proceedings of 1996 IEEE Symposium on Visual
Languages, IEEE Computer Society Press, 1996.

[Kehoe 1999] Kehoe, J, et al. Rethinking the Evaluation of Algo-
rithm Animations as Learning Aids: An Observational Study, Geor-
gia Institure of Technology, Atlanta, GA, 1999.

[Koike 1995] Koike, H, et al. A Bottom-Up Approach for Visual-
izing Program Behavior, Proceedings of the 11th Symposium on
Visual Languages, IEEE Computer Society Press, 1995.

[Liu 1996] Liu, Z. A System for Visualizing and Animating Run-
time Histories,Proceedings of 1996 IEEE Symposium on Visual
Languages, IEEE Computer Society Press, 1995.

[Lindsay 1996] Lindsay, R.K, Images and Inference, appears in
Diagrammatic Reasoning : Cognitive and Computational Perspec-
tives, Glasgow, et al, MIT Press, Cambridge, MA 1996

[Maeda 1999] Maeda, J. Design By Numbers. MIT Press, Cambridge,
MA, 1999.

References : 109

[Myers 1990] Myers, B. Creating Interaction Techniques by Demon-
stration, appears in Visual Programming Environments: Paradigms
and Systems, ed. Ephraim P. Glinert, 1990.

[Norman 1993] Norman, D. A. Things that make us smart. Addi-
son-Wesley, Reading, MA, 1993.

[Reiss 1990] Reiss, S. Working in the Garden Environment for Con-
ceptual Programming, appears in Visual Programming Environ-
ments: Paradigms and Systems, ed. Ephraim P. Glinert, 1990.

[Repenning 1997] Repenning, A. Behavior Processors: Layers
Between End-Users and Java Virtual Machines, Proceedings of the
1997 Symposium on Visual Languages, IEEE Computer Society
Press, 1997.

[Searle 1980] Searle, John R. Minds, Brains, and programs, appears
in The Behavioral and Brain Sciences, 3, 417-457, 1980.

[Sheridan 1992[Sheridan, T. Telerobotics, Automation and Human
Supervisory Control, MIT Press, Cambridge, MA, 1992.

[Shu 1990] Shu, N.C, Visual Programming Languages : A Perspec-
tive and a Dimensional Analysis, appears in Visual Programming
Environments: Paradigms and Systems, ed. Ephraim P. Glinert,
1990.

[R.Smith1990] Smith, R, Experience with Alternate Reality Kit: An
Example of the Tension Between Literalism and Magic, appears
in Visual Programming Environments: Paradigms and Systems, ed.
Ephraim P. Glinert, 1990.

[D.C.Smith 1999] Smith, D.C, Pygmallion: An Executable Elec-
tronic Blackboard, appearss in Watch What I Do, <http://
www.acypher.com/wwid/Chapters/Pygmalion.html>, 1999.

[D.C.Smith 1996] Smith, D.C, VL’96 Special Event: Perspectives
from the Pioneers, David Canfield Smith, Proceedings of 1996 IEEE
Symposium on Visual Languages, IEEE Computer Society Press,
1996.

[Stasko 2000] Stasko, J, et al, Software Visualization: Programming
as a Multimedia Experience, MIT Press, Cambridge, MA, 2000.

[Szwillus 1996] Szwillus, G. Structure-Based Editors and Environ-
ments, Acadamic Press, New York, 1996.

[Travers 1996] Travers, M. Programming with Agents: New meta-
phors for thinking about computation, PhD Thesis, MIT Media
Laboratory, 1996.

References : 110

[Tufte 1990] Tufte, Edward R. Envisioning Information. Graphics
Press, Cheshire, Conn, 1990.

[Tufte 1992] Tufte, Edward R. The Visual Display of Quantitative
Information. Graphics Press, Cheshire, Conn, 1992.

[Turing 1937] Turing, Alan M. On computable numbers with an
application to the Entsheidungsproblem. appears in Proceedings of
the London Mathematical Society, ser. 2, vol. 42, 1937.

