
Embedded Systems for

Computational Garment Design

Megan Lee Galbraith

B.S. Mathematics with Computer Science,

minor in Women’s Studies

Massachusetts Institute of Technology, 2001

Submitted to the Program in Media Arts and Sciences,

School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences at the

Massachusetts Institute of Technology

June 2003

© 2003 Massachusetts Institute of Technology

All rights reserved.

Megan Galbraith

Program in Media Arts and Sciences

John Maeda

Associate Professor of Design and Computation

Thesis Advisor

Andrew Lippman

Chair, Departmental Committee on Graduate Students

Program in Media Arts and Sciences

Abstract

Embedded Systems for

Computational Garment Design

Megan Lee Galbraith

Submitted to the Program in Media Arts and Sciences,

School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences at the

Massachusetts Institute of Technology

June 2003

Thesis Supervisor: John Maeda

Associate Professor of Design and Computation

In an age where identity is increasingly fluid and multifaceted, the static

clothing and unresponsive materials we wear are often an insufficient

means of expression. Clothing designers want to create systems of clothing

that react, collect information, and enrich our interactions with spaces and

people; however, technical barriers inhibit designers interested in building

computational garments. Designers need a tool that is attainable and usable

in order to successfully work in the field of computational garment design.

This thesis introduces a powerful, intuitive tool named Zuf which provides

a new approach to control embedded devices using fuzzy logic. Zuf is

a prototyping and simulation environment for programming and testing

embedded devices. Users write code by establishing simple, natural

language rules. The rules are translated into fuzzy algorithms which run

on the devices. Zuf enables fashion designers to think abstractly about

computation as a medium.

4

Megan Lee Galbraith

Submitted to the Program in Media Arts and Sciences,

School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences at the

Massachusetts Institute of Technology

June 2003

Thesis Readers

Joe Paradiso

Associate Professor of Media Arts and Sciences

Responsive Environments Research Group

MIT Media Laboratory

Mitchel Resnick

Associate Professor of Media Arts and Sciences

Lifelong Kindergarten Research Group

MIT Media Laboratory

Embedded Systems for

Computational Garment Design

1 Title Page

 3 Abstract

 5 Readers

 7 Table of Contents

 9 Introduction

19 Background

Wearable Computing and Related Work

Computational Garment Design and Related Work

Technology of Computational Garments

Fuzzy Logic

Computational Literacy

 45 Preliminary Work

Peppermint

Belly

Elroy

Iris

Saturnpants

Scribble

Nylon

 63 Zuf: A Fuzzy Control System

System Design

Process

Future Improvements

 77 Application & Analysis

Zuf as an Educational Tool

Using Zuf to Build Garments

Feedback from Design Students

 101 Conclusion

 107 Bibliography

 113 Acknowledgements

Table of Contents

Chapter One

Introduction

Clothing has been used to transform the body and alter

our understandings of self and the human form for years.

Much like corsets and bustles work as underlying systems

to mold, shape, and support our body and clothes, we

can use new technologies, materials, fabrication processes,

and computational systems to adapt to, respond to,

monitor, and alter our bodies and clothing. Through these

systems we can create rich new experiences and modes

of expression.

Technology as a medium for design enables new

instantiations of style and personal identity. Applications

for technology that relate to the physical human form are

rapidly developing as lighter and more robust components

get introduced to the market. Despite the growing interest

in technology as a means for expression - particularly in the

area of fashion design - no discussion or vocabulary exists

about how technology changes our definition of fashion or

transformations of the body.

Computers, like finger paint and beads, should be

used as a “material” for making things...

Mitchel Resnick, Closing the Fluency Gap, 2001

10

Work developed in the area of wearable computing focuses

on the technical capabilities of garments instead of the

aesthetics. It is not simply a matter of sewing MP3 players

and cellphones into our jackets. Nor is it simply about being

able to wear personal computers rather than carrying them

in cases.

Introducing concepts of aesthetics, kinetic sculpture, and

visual design into the field of wearable computing changes

the nature and the goals of the work. The focus shifts

from the technology to the garment, from functionality to

context. This shift marks the foundation of a new area of

research called computational garment design. Computational

garments are garments that contain embedded technologies

designed to enhance clothing and make it reactive or dynamic.

Computational elements can breathe a sense of life into

previously inanimate objects, redefining how we relate to,

wear, and think about our clothes.

The field of computational garment design is starting to

take root amongst technical fields of research, but fashion

designers are unable to use computation in their designs

because technical barriers are generally too high, too

impermeable, or too intimidating. Developing new approaches

to control and use embedded devices enables fashion

designers to think abstractly about using computation as a

technical medium for their designs without getting thrown

off by the burden of implementation. In order to encourage

fashion designers to think about and use embedded devices

in their work, this thesis focuses on the development of a

new environment designed using a web-based, fuzzy logic

programming model, shifting away from traditional device

control practices.

11

The chapter in this thesis entitled “Background” is designed to give

an overview of the different areas of research pertinent to this work.

These areas include Wearable Computing, Computational Garment Design,

Embedded Systems, Fuzzy Logic, and Computational Literacy. The chapter

contains a discussion of each area and provides samples of work and

references to related papers or writings. It is intended as a resource for

others interested in this vein of research.

The next chapter, entitled “Preliminary Work,” contains additional

motivation for this research which stems from a collection of computational

garments that I constructed during the period between September 2001

and March 2002. Each of the garments brought to light many of

the challenges, needs, and frustrations that designers might encounter

during the development process of a computational garment. Elroy, Iris,

Peppermint and the others were indispensable projects for testing and

exploration. They carved out the functionality and needs of a development

tool aimed for designers. Each garment brought to light at least one

important element implemented in the Zuf software. Their contributions are

highlighted in the third chapter.

The fourth chapter, entitled “Zuf: A

Fuzzy Control System,” gives a detailed

description of the fuzzy programming tool

including the interface design, software and

hardware design, and interaction design.

The fifth chapter, “Analysis & Applications,”

provides an in-depth analysis of the system,

including people’s experiences using the

system, its ability to empower designers,

and its weaknesses. The thesis concludes

in the final chapter, “Conclusion,” which

reiterates this area of research and its

approach, then discusses where the field is

going in the future.

An illuminating skirt created by

designer Erina Kashihara.

12

Empowering Designers

For adults, computer programs exist that provide control capabilities for

hardware and development spaces for software, but these programs are

typically not for novice users. An inexperienced adult interested in building

a project with a microcontroller has a variety of options to chose from,

but the truth is that most programs are ineffective tools for learning

the underlying concepts. The programs are difficult to set up, difficult to

understand, and extremely intimidating. Some provide high level languages

to use to control the devices, but the languages still require a basic fluency

in writing procedural programs. Others require a deep understanding of

the circuity in order to write programs. Users must rely on dense maps

and complicated circuit diagrams that show the connections between pins,

buses, and other elements in order to write working code.

Meanwhile, educational tools developed for the computer might help

designers use computation in their work; however, they are primarily

designed for children. Bright colors, cartoon-like characters, animals,

associations with toys, silly sounds, and graphical elements construct the

interface for a myriad of programs designed as exploratory spaces. Through

these programs, children can learn about and understand the complex

world of computation. These programs are powerful because they provide

a stepping stone for children to explore tasks in relation to computation,

mathematics, science, identity, and, in some cases, social responsibility. But

these same programs fall short for adults who want to use computation

for their professional work.

Adults with weak mathematics or science backgrounds think very differently

about computers and computation than adults who come from stronger

technical backgrounds. This is not to say that “non-technical” adults

13

will not (or do not) find computers useful in their daily life, work, or

hobbies. In general, people are becoming more adept at using computer

programs or familiarizing themselves with operating systems and simulation

environments. Many adults use computers to accomplish tasks such as word

processing, email, or commerce. The catch is that these adults operate

in abstraction levels far removed from the internal structure, design, and

operation of the computer as a machine.

Hobbyists and computer enthusiasts have a conceptual model of the

computer as a machine and therefore a desire to mess around with its

functionality. My father is one of these enthusiasts, and in his spare time

he likes to add internal devices, reinstall operating systems, or fuss with

his scanner and digital camera. His approach is methodical and calculated.

Unlike engineers or experienced hackers, however, he is fearful of damaging

the computer, so he reads the manual and instruction booklets with fervor.

His progress is slow, precise, and safe. Adults like my father have the

confidence to open up machines and toy with their controlling mechanisms,

but they often have no space in which to do so with complete freedom

or lack of fear. We need an educational tool that helps my father, fashion

designers, and other adults delve into complex ideas about computation

and programming. Yet no appropriate tool exists.

Development tools designed for embedded devices assume a complex

understanding of computation and are no place for beginning users to

explore and build computational projects. Some commercially-available,

high-level packages include the BasicStamp, MiniJava, I-Cube, and others.

The BasicStamp, for instance, is a development platform geared towards

beginners which couples a software development tool with microcontroller.

Its reliance on a form of the BASIC language, however, creates a confusing

and difficult barrier for adults who have no programming experience. Since

most development platforms are not geared toward beginners, they are

dramatically complex and difficult to use.

14

Educational tools, on the other hand, are generally available to people

of any age, but adults are less likely to use the programs because of

age-related taste differences or irrelevance to their occupation. No clear

connection exists between the output of these programs and the tasks

adults need to accomplish in their career. There is little motivation for

adults to conceptualize useful projects to build with computational devices

because the appropriate tools do not exist for use by anyone without an

engineering degree. Computationally educational programs are associated

with children’s toys. “Real work” can’t be accomplished with a child’s

video game, play calculator, or educational computer program. A designer,

for instance, would not feel comfortable showing a prototype garment

controlled by LEGO parts to their client when they are expected to build and

design professional work.

How, then, are adults supposed to learn about and use embedded devices

if there is no useful resource available to them? It’s infeasible to expect

them to learn everything in a college classroom. Without a colleague or

peer familiar with the work to guide them, the task is daunting enough to

be avoided altogether.

Building Blocks

For this thesis, I developed a system called Zuf for fashion designers

and non-technical adults interested in building computational garments

or programming embeddable devices but do not have the technical skill,

background, or intuition to delve into such projects alone. After building

computational garments for over a year, I realized there should be a better

method for developing these garments. Each time I set out to build a new

garment, I had to reimplement the same or similar programs and circuits

that either I or other researchers had built many times before. I felt like I

was reinventing the wheel.

15

I spoke to many students and designers interested in building these

types of garments. Across the board, they were all highly capable of

developing strong concepts for computational fashions, and were highly

capable of designing non-functioning prototypes of their ideas. However,

they were rarely able to bring these ideas into reality and make actual,

functioning garments.

At the time, my colleagues and I were in the process of developing

Nylon, a computational system for programming and simulating

microcontrollers. Through this work, I realized the benefit of having a

highly integrated, aesthetically oriented system for novices and designers

to use for experimentation and development. It seemed obvious that

such a system was needed for fashion designers and other adults

interested in building computational garments, especially for those who

do not have the benefit of being able to study technology in school or

work around highly skilled, technical people. It needed to be a system

that was powerful and elegant to use, as well as easy to pick up.

The system needed to let people teach themselves how to use and

build computational projects without the headaches that are so common

during traditional hardware development.

Two things seemed particularly important as I ventured into this work.

First, the system needed to have a viable amount of abstraction away

from the hardware specifics. Second, there needed to be a strategic step

away from traditional programming methodologies. The people who I

imagined would be interested in this system wouldn’t care at first about

the underlying architecture of the devices, sensors or hardware they want

to use. For the purposes of their work, there is no need for them to.

Therefore, if the field of computational garment design is to really open

up and blossom as a new approach to designing, building, and thinking

about clothing, then such walls must be torn down.

16

It is not entirely pertinent for a fashion designer to be an expert

programmer or hardware engineer in order to create beautiful or evocative

designs for their computational garments. It is pertinent, however, for

designers to use computational materials comfortably and with some

amount of control in order for the designs to move off the sketch pads and

into the physical world. The Zuf system developed for this research does not

require a perfect understanding of electrical engineering or programming

in order to be useful and effective, nor does it take away complete control

of the device from the user. The system is instead designed as a gateway

between two worlds, allowing room for experimentation and exploration

before requiring a hard leap into the technological unknown.

A Fresh Outlook

Generally the approach for programming small devices begins with

mastering specific applications which require complex initialization

procedures to access the devices. Situating the Zuf environment within

a website makes the process more familiar for designers. The explosion

of Internet use over the last decade has resulted in general familiarity

with website visitation, email checking, online shopping, etc. The web is a

medium used for many purposes by people from varieties of backgrounds

and education levels. A successful website developer designs for the user-

experience of a site because it is critical for their client’s business to ensure

that users can utilize the software to its full capabilities and intentions.

Thus the web becomes a powerful tool for reaching people who are wary

of technology but have found comfortable spaces to occupy online. It is

precisely for this reason that Zuf utilizes the web as a space for hardware

development, and demands the same attention to user interface design as

a high traffic website.

17

There is an intellectual opportunity in this domain of work. Computational

garments will emerge as key actors in our lives once they are accessible,

inexpensive, and well-designed. They offer the ability to provide new

dimensions for interaction, performance, and social cues, not to mention

they will enhance the aesthetics of clothing. Currently, the outfit or

uniform we choose to wear each morning generally remains on our bodies

throughout the day, and yet each evening the garment knows nothing

more about our lifestyle, friends, or work environment than it did when it

was donned. Computational garments can provide elegant and unobtrusive

ways to gather, store, and access information. Medical and rescue industries

might employ particular concepts and technologies to improve missions

and increase performance, while athletics and sporting industries might use

them to monitor and enhance the performance of athletes and teams.

Computational garments can provide new ways to interact with people

and spaces, and provide cues about identity, belief systems, sexuality, or

economics. Such results should bring forth notable social behaviors or

expressions of self, or evoke new types of relationships.

Initial technological developments required to develop computational

garments are already in place, but there is a large amount of work yet to be

done. Appropriate technologies, education, vocabulary, and a community

must be established. Collaboration between many industries is critical to the

success of new fashion design. Wearable computing researchers have made

considerable headway in the development of electronic components that

are small, lightweight, robust, or flexible. The fashion industry, however,

is quickly falling behind in terms of adapting to and adopting these new

technologies. The tools for designers need to be developed in order for the

field to avoid becoming a niche, strictly accessible to computer scientists

and electrical engineers. The research for this thesis attempts to lay the

foundation for some of these needs.

Chapter Two

Background

This chapter gives an overview of related work in the fields

of Wearable Computing, Computational Garment Design,

Embedded Devices, Fuzzy Logic, and Computational

Literacy. Each of the five sections is distinct in goals

and work; however, they are equal contributors to the

foundation upon which this research is built. The ideas,

technical innovations, and images presented in this chapter

have served as inspiration and motivation throughout the

construction of the Zuf system and its preceding projects.

“Visually, things have to make sense, in an almost

mathematical way. I’m not anal or anything.. but

when it comes to what I wear, I’m very precise.

I know what’s going to work, and I know what’s

going to suck.”

Cameron Diaz, in Vogue, May 2003.

20

Wearable Computing and Related Work

Steve Mann, a pioneer in the field of wearable

computing, defines a wearable computer as a

computer that is small, worn on the body, and

taken into the personal space of the user. (Mann,

1998). Wearable computers are always on and always

accessible, “more than just a wristwatch or regular

eyeglasses: [they have] the full functionality of a

computer system.” (Mann, 1998). Generally, these

devices consist of eyewear, helmets, belts, vests, and a

variety of bulky gear. Entire systems of garments and

accessories contain the workings of a fully functional

personal computer.

Wearable computers began development in the

late sixties, when Morton Heilig patented a

stereophonic television Head-Mounted Display. Heilig

is known more for his “Sensorama Simulator,”

a virtual reality simulator developed in 1962

with handlebars, binocular display, vibrating seat,

stereophonic speakers, cold air blower, and a device

close to the nose that generates odors which fit the

action in a corresponding film (Rhodes, 1997).

Wearable computers from the

1970’s (top) and 1980’s (bottom).

Images taken from Jay Levine’s

photoshoot prior to the “Origins

of Cyberfashion” show during the

2000 TED Conference. University of

Toronto, 2003.

21

The 1970’s brought the development of the

first wearable devices, as well as one-handed

keyboards, eye-mounted displays, and Hewlett

Packard’s algebraic calculator wrist watch (Rhodes,

1997). Early wearable computers initially

challenged the idea of computers as immutable

constructs. They specifically addressed the ability

to run computers on batteries and, for the

first time, brought the computer and human

into mutually beneficial relationships (Wearable

Computing, 2003). Thanks to work of wearable

computing researchers throughout the seventies,

eighties, and nineties, traditional interaction

between human and computer is no longer

limited to the comfort of a desk chair.

Mann makes the distinction that wearable computers are reconfigurable

and programmable by the wearer (Mann, 1998). Computational garments,

in contrast, are not required to be reconfigurable, although they can be.

A common misconception is that computational garments are synonymous

with wearable computers. The fields overlap and depend upon each other

in many ways, however they come from different ends of the continuum

and it is important to understand their distinctions.

Computational garment design concerns itself with the aesthetics of

garments enhanced by technology or innovative materials with reactive

properties. The technology is not the focal point of the garments, rather it is

the aesthetic beauty, the unique interactions, and the interesting behaviors

that emerge as a result of embedding technology in clothing. Technology in

computational garments should be as invisible as the thread that holds the

fabric of the garment together.

Wearable computer of the 1990’s. Image

from Jay Levine’s photoshoot prior to

the “Origins of Cyberfashion” show at

the 2000 TED Conference. University of

Toronto, 2003.

22

Wearable computing, on the other hand, is

concerned with the functionality, robustness, and

usability of the technology as it inhabits spaces

on the body. To the general public, the phrase

“wearable computing” elicits images of cyborg

humans donning devices that transform them into something untouchable

and unapproachable. Technical features offered by wearable computers

take precedence in design over the aesthetic and physical properties of

the garments that house them. Wearable computers tend to be considered

a fashion faux pas. Bruce Knaach, a manager at IBM working on the

development of wearable computers on the industry side explains,

Wearing a computer isn’t a socially acceptable thing. You look

like a soldier wearing half a helmet.. kind of Borg-ish. That

forces it [the devices] into environments where people either

don’t care what they look like or have it as a condition of

employment (PCWorld, 1999).

In defense of wearable computers, when headphones and portable music

devices were introduced in the late seventies, no one expected them

to become a trendy, techno-accessory. Yet now they have a market all

their own, with the most sophisticated, funkiest, sleekest, and ergometric

designs landing on the shelves to date. People looking for a way to

block aural stimuli from their surrounding environment and place them

in a netherworld of pleasing sounds turn to their headphones. They base

purchasing decisions on form, color, and technical quality. As Sony touts

on their website, headphones have become “Not just an audio accessory, a

fashion accessory...” (Sony, 2003).

Scrolling text T-shirt from Cyberdog, 2003.

23

It can be argued that headphones are in fact the first product in the field of

wearable computing which has successfully entered the consumer market

and become accepted by mass culture. We might wonder why wearable

computers haven’t followed suit in popularity or trendiness, since technically

they offer leaps and bounds more functionality than your basic portable

music player and headphones can provide. Perhaps it is because the physical

devices are bulky and awkward, conjuring images of cyborgs or unpleasant

science fiction characters, or perhaps they need only withstand the test of

time to slowly creep into public consciousness and acceptance.

Wearable computers are becoming a steadfast fixture in Internet lore. Their

strong cult-following among scientists, electrical engineers, and Internet

junkies might soon be their redemption, for these are the people doing

the research that will eventually make the devices smaller, more efficient,

and potentially more sleek and socially acceptable. Academic communities

are firmly in place for wearable computing research. Over the last six

years, the Institute of Electrical and Electronics Engineers (IEEE) has held an

International Symposium on Wearable Computers (ISWC).

At the MIT Media Laboratory, Prof. Sandy

Pentland, Rich DeVaul, Thad Starner, the

Wearable Computing group, MIThrill, and

other faculty and research students have

worked in this domain throughout the last

twenty years. In 1997, the Media Laboratory

hosted the first wearable computing fashion

show, called “Beauty and the Bits.” The show

was a collaborative effort between the Media

Laboratory, Bunka Fashion College in Tokyo,

Creapole in Paris, Domus in Milan, and

Parson’s School of Design in New York

(MIT Wearables, 2003).

A sketch of the Mushroom Cap: The

Year 2018, a garment designed by Nanae

Hashimoto, Ai Mizuno, Seonhyu Na, and

Jennifer Healey for the MIT Media

Laboratory’s Wearables fashion show. 1997.

Other institutions have joined MIT in wearable computing research.

Stanford University’s Computer Science Department contains a Wearable

Computing Laboratory which works on the “design of highly wearable

general purpose PCs and improved technologies for the human interface

to wearable computers” (Stanford University, 2003). Their research

includes work in the areas of speech input and output and digital sign

languages (Stanford University, 2003). The University of Oregon’s Wearable

Computing Laboratory in the school of Computing and Information Science

“investigates the use of cutting-edge mobile and wearable computing

technology to assist people during social encounters in the real world”

(University of Oregon, 2003).

At Carnegie Mellon University, the Wearable Group is an interdisciplinary

team of researchers working on software, hardware, and interaction

design as it relates to wearable and pervasive computing (CMU Wearable

Group, 2003). Wearable computing research tends to overlap with

research in ubiquitous computing, pervasive computing, context-aware

computing, augmented realities, dynamic interfaces, shared information

systems, personal computing, and safety control systems.

In addition to academic developments, the United States Military is funding

many of the projects and research in wearable computing. The military

is interested in improving the uniforms of soldiers in combat, such as

providing them with clothing that would make them invisible, help protect

them against injury, or heal wounds. The military has already deployed

high-tech gear for urban warfare that includes global positioning, heads-up

displays and networking capabilities (Kumagai, 2001).

Research in wearable computing must not only focus on technical quality

and improvements, but must forge new ground in physical design and

ergonomics. Only recently have various companies and academic labs

started to conduct research that makes a concerted effort to improve

the aesthetic design of wearable computers. Studies are being conducted

to find optimal regions where hardware should be placed on the body.

24

25

Manufacturers like Xybernaut are producing accessories with specially

sized pockets to house portable technology. Still, wearable devices are

bulky, awkward, and techno-centric. In order to increase demand and

begin acceptance into mass culture, wearable computer designs have

a long way to go.

Computational Fashion Design

and Related Work

Computational fashion design focuses on the

aesthetic and social properties of clothing,

questioning how technology might be

embedded into garments to change the

behavior of clothing and its physical properties.

Technology is used as a material for

construction, but does not take focus off

the clothes themselves as beautiful elements,

indicative of style, personality, and identity. The

spectrum of behaviors possible from embedding

technology into garments fall into the following

categories.

Dynamic / Static

Reactive / Disregarding

Disposable / Permanent

Mutating / Preserving

Communicative / Withdrawn

Informative / Mysterious

Humorous / Solemn

Computational garments can fall along any of

the axes and also overlap with multiple axes.

Each property is realized through choice of

technology, material, color, fit, shape, texture,

Maggie Orth’s Firefly dress (front) and

Hussein Chalayan’s motorized dress (back),

taken during the 2003 Wear Me exhibition

in Rotherham, UK.

26

and concept. An informative garment, for instance, should utilize an

embedded system with good storage capabilities, whereas a communicative

garment needs an embedded system with the ability to pass data to other

systems via wireless connectivity, RF, or other means. Garments that mutate

or change shape must be mechanically and structurally sound.

Computational garment design is just breaking forth into industry after

years of academic work and research development. Some key players

in the development and growth of computational fashion design as a

field are described in this section. The researchers, artists, engineers, and

designers described are pioneers. Their work has refocused the aims of

many individuals and companies.

In addition to wearable computing research, the MIT Media Laboratory

is conducting research in computational fashion design. Maggie

Orth, Elise Co, Prof. Joe Paradiso, and

others have developed conceptually beautiful

and innovative projects in this area. Joe

Paradiso is the director of the Responsive

Environments Group. In the late nineties,

he developed expressive footwear as a

performance interface for dancers. The

shoes wirelessly transmitted measurements

recorded by sensors embedded in the shoes,

thus providing dancers with control over

the volume, tempo, and other musical

parameters (Paradiso, 1999).

Maggie Orth was a Ph.D. student who

worked with Rehmi Post and others to

develop conductive threads that could be

sewn into fabric and used to create soft

circuitry for jackets, tablecloths, and dresses.

The Firefly Dress, the Musical Jacket, and

Dancers’ expressive shoes were developed

by Prof. Joe Paradiso and his students for

the 1999 American Dance Festival. MIT

Media Laboratory.

27

embroidered musical instruments are some

of the projects Orth worked on during her

studies. The Firefly Dress uses conductive fabric

to distribute power throughout a dress so that

as the wearer walks, LEDs brush against the

power layer and illuminate (Orth, 1998). The

Musical Jacket has an embroidered keypad

on the top left chest which triggers the

jacket to play musical notes when the keypad

is touched (Post, 2000). The embroidered

musical instruments likewise use conductive

threads to create pressure sensors that trigger

a computer to play music. The sensors look

like intricately embroidered patterns on a soft,

squeezable ball (Orth, 1998).

Elise Co presented the idea of computational

fashion design in her Masters thesis

“Computation and Technology as Expressive

Elements of Fashion” (Co, 1998). She created

very elegant examples of computational

garment design, including Perforation, the

Garment Chimerical, and Puddlejumper,

among others.

Co’s project Perforation plays with the

transparency of light through the body.

A winding fiber optic belt transmits light

between matched arrays of perforations and

the effect is a sense of transparency cutting

through the core of a human body (Co, 2003).

The Garment Chimerical uses a flat-screen

LCD panel and computationally generated 3D

graphics to project imaginary clothing into the

Top: Elise Co’s Perforation, 1999.

Bottom: Co’s Garment Chimerical, 1999.

28

physical world. “The display, worn on the

back in a custom-built pack, shows a virtual

garment in the context of an abstracted 3D

representation of a male back. Through sensors

embedded in an arm unit, the chimerical

garment responds to body movements, breath

and temperature” (Co, 2003). Puddlejumper

is a luminescent raincoat that responds to

droplets of rain (Co, 2003).

Internationally, the Swiss Federal Institute

of Technology’s Electronics Laboratory has a

Wearable Computing Laboratory that “focuses

on the hardware and system architecture

challenges posed by the wearable computing

vision” (ETH, 2003). Throughout Europe,

research is starting to conceptualize in the areas of computational fashion

design, in particular at institutions such as Italy’s Interaction Design Institute

Ivrea and London’s Royal College of Art.

The intersection between fashion and technology is being explored by

students at Parson’s School of Design in New York. Parson’s Center

for New Design offers a course in Fashionable Technology. The course

investigates the relationship between wearable technology and fashion

(Seymour, 2003).

Commercial products from Levi Strauss & Co., Burton Snowboards,

Apple®, Charmed Technologies, and other companies are starting to

enter the market and capitalize on technology embedded into garments

and accessories. Motorola Inc. offers the i90c limited edition phone

with pearlized finish for Bloomingdale’s customers so that they can have

sophisticated communication devices that are also fashion accessories

(Motorola, 2002). Motorola is also developing garments that integrate

Sketch of student work in Parson’s

Fashionable Technology Class, 2003.

29

PDA’s, phones, and MP3 players in interesting, ubiquitous ways. These

garments are not commercially available yet, but were on display at the

Wear Me exhibition that took place in the UK during 21-26 April 2003.

In the spring of 2003, Burton Snowboards partnered with Apple®

Computer to create a snowboarding jacket that houses a sound and control

system for Apple’s iPod. A fabric keypad on the arm, developed by the

company SOFTswitch™, controls an iPod that is stored on the chest. The

“Burton Amp” jacket is made out of 3L GORE-TEX® fabric, and is on sale

for a limited time at the non-trivial price of $500, iPod not included.

A relatively new company, ElekSen, is also working on soft switching

technology which depends upon contacting layers of conductive fabric or

varying resistances across partially conductive fabric. Their ElekTex™ fabric is

capable of electronic sensing and can be stretched, scrunched, and washed

(ElekSen, 2003). They recently announced a commercially available flexible

keypad that will come with Orange SPV Smartphones (ElekSen, 2003).

Left: Motorola Inc. design on display at the Wear Me

exhibition, 2003. Right: The Burton Amp jacket, 2003.

30

Royal Philips Electronics and Nike, Inc. have likewise created an alliance

to merge athletic and digital technology expertise because “athletes want

technology that stimulates and enhances the athletic experience” (Royal

Philips Electronics, 2002).

Reima Smart Clothing is a research company that has the goal of improving

basic clothing through adjustable insulation and ventilation, although their

current work has primarily focused on integrating clothing with mobile

devices (Reima, 2003). Cyberdog is a company based in the United

Kingdom that sells T-shirts

and vests with reflective

material or reprogrammable

illuminating displays. Their

“Light S/S Red Alert” shirt,

for instance, has a red 32

character scrolling display on

the chest of a black shirt.

It sells for approximately 90

dollars (Cyberdog, 2003).

In addition to academic and

commercial endeavors, a few fashion

designers have explored the area of

computational garment design. These

designers are the exception, however.

In general the fashion industry has

been slow to incorporate technology

into their designs. Hussein Chalayan’s

Spring 2000 collection, Before Minus

Now, contained the Airplane Dress,

a motorized dress with white panels

that open and close around the body.

Erina Kashihara has created skirts

Hussein Chalayan’s motorized dress (bottom) and a close

up view of one motor (top), 2003.

31

with glowing orbs and layers. In addition, many designers have embellished

elements of clothing with imagery of printed circuit boards or other

technical looking patterns.

Overall, the fields of computational garment design and wearable

computing are slowly moving towards each other on the continuum

as better technology, increased research, and efficient designs are being

developed. But until fashion designers are as free to explore and design

with technology as they are with fabric and threads, the industry and all the

possibilities for this work will continue to lag behind.

Technology Behind Computational Fashions

Outside the scope of wearable computing and

computational garment design, interesting scientific

research is being done that will eventually impact the

design and construction of garments.

Powering garments is a tricky and burdensome

problem because batteries tend to be heavy and bulky.

Innovations in the area of power will greatly improve

the aesthetics, feel, and drape of computational

garments. For instance, at the University of California,

Berkeley, chemists are developing solar cells that are

cheap, can be produced easily, and can be placed on

plastics. They are based on inorganic nanorods and

so they are also small (Sanders, 2002). In addition,

Material scientists at MIT are working to develop

flexible and thin batteries (Sadoway, 2002). At the

Media Laboratory, Joe Paradiso, Nathan Shenck, and

others worked to develop a pair of shoes that generate

power from excess energy expended while walking

(Shenck, 2001).

Images of International Fashion

Machine’s Electric Plaid, 2003. Photo

courtesy of Maggie Orth.

32

Companies are also working on problems associated with

power. Casio, for instance, is developing small, high efficiency

fuel cells for potential use in PDA’s, laptops, and mobile

devices (Casio, 2002). VoltaFlex is a company developing

high power, thin-film batteries based on the research from

MIT’s Materials science department (VoltaFlex, 2003).

Improvements in sensing technology will have an enormous

impact on the development of computational garments.

Currently, researchers are working on improvements and

developments that include capacitance loading, flexible switches, embedded

fringe sensing, and more. Danilo DeRossi of the University of Pisa is working

with students to develop wearable strain gauge sensing technologies that

record posture and movements (DeRossi, 2002).

In the textile industry, textile scientists, polymer chemists, physicists, and

bioengineers are starting to brainstorm applications for “intelligent” fibers

and fabrics that they hope to develop (Waters, 2002). Maggie Orth’s

company, International Fashion Machines, is developing hand woven textiles

that use a reflective color changing medium to create fabric weaves that have

dynamic, programmable patterns and colors. They call the medium Electric

Plaid, and it premiered at the Cooper

Hewitt National Design Triennial in

New York City in April 2003, as

part of the project Hydra-House

(Orth, 2003). At StarLab NV/SA, a

private lab in Belgium, researchers

developed “Fiber Computing,” which

consisted of transistors fabricated into

silicon fibers that could then be

integrated into textiles (Cakmakci and

collaborators, 2001). Top: A flexible, thin-film battery produced by

VoltaFlex, 2003. Bottom: Parasitic Shoes. Courtesy of

Joe Paradiso, MIT Media Laboratory. 2003.

33

Embeddable Devices

Many popular, powerful, and relatively inexpensive

microcontrollers are on the market these days. Functionality

ranges from basic logic control up to fully functioning computers

with wireless Internet, RF communication, BlueTooth, global

positioning capabilities, and more. Microchip, for instance,

has a vast selection of programmable devices called PIC

microcontrollers. Hundreds of families of PICs exist, and users

can write code for them using assembly language, a variation

of C, even BASIC. In fact, microcontrollers exist that can be

programmed by most popular software languages, such as Java,

or Logo. Others require a hardware specific language, machine

code, or assembly code. Rabbit Semiconductors, Parallax, Atmel,

and Texas Instruments are some of the many companies which

manufacture microcontrollers and embeddable devices.

With so many options on the market, it can be daunting for a

designer to know where to turn when building a computational

garment. The languages, functionality, and cost are all factors

that must be taken into consideration when choosing the right

device. Particular programming, engineering, and mathematics

skills are generally required or assumed in order to use the

devices. The skills are desirable but may not exist yet for designers

setting out to build computational garments.

34

Fuzzy Logic

Fuzzy logic was designed to model the uncertainties of natural language,

thus becoming an obvious choice as a way to provide designers with a

powerful, yet intuitive, programming language. Fuzzy logic is a form of

boolean logic that is capable of handling partial truths, or values that are

not absolute (Buckley, 2002). Instead of assigning values to be completely

true or completely false, elements fall in a subset between two absolute

ends. Thus, a mapping from one set to another is not discrete. Subsets are

described by membership functions, which describe the degrees to which

elements belong to the set. For instance, the membership function for a

set S describes to which degree the statement “Element X is in set S” is

true. Users of fuzzy devices establish rules for how they expect their device

to behave given certain circumstances, or inputs. The collection of rules is

mathematically analyzed in order to determine actual behavior.

Fuzzy logic was developed by Lotfi Zadeh, a professor in the Graduate

School of the Computer Science Division, Department of EECS, University

of California, Berkeley. He is also director of Berkeley’s Initiative in Soft

Computing (BISC). Dr. Zadeh has been an influential researcher of system

theory and decision analysis. More recently, however, his work has focused

on the theory of fuzzy sets, fuzzy logic, soft computing, computing with

words, and newly developed computational theories of perception and

natural language. Applications for his work include artificial intelligence,

linguistics, logic, decision analysis, control theory, expert systems and neural

networks (Zadeh, 2003).

35

Dr. Zadeh’s recent work on computing with words is particularly interesting

and important in this discussion of building a fuzzy logic programming

environment. Much of the success of this environment lies in its ability to

provide a means for non-technical and non-mathematical users to think

about and connect with programming and computing. Taking advantage

of the structures of natural language is an obvious way to approach the

problem. Humans communicate with language on a daily basis. They are

typically more familiar with quantifying and describing relationships and

behaviors with language and words than they are with numbers and

equations. Finding a logical, rigorous way to do our computation with

language and words rather than with discrete values means we have found

a key to unlock the door between programmer and designer.

In 2001, Paul P. Wang put together a book entitled “Computing with

Words” that explores the ways in which we can harness the expressive

power of words and propositions through computational means. One of

the reasons why fuzzy logic is so powerful is because of the way it uses

language to compute. The input and output devices are defined using

nouns, and each variable is assigned to an adjective which modifies the

nouns. The creation of simple English language sentences is enough to

create robust and elegant computational capabilities.

Fuzzy logic has been implemented in control systems for many years.

General Electric created a steam turbine controller that uses fuzzy logic,

Nissan developed a fuzzy automatic transmission controller, and Matsushita

Electric has built fuzzy washing machines and vacuum cleaners (Chiu,

1998). Researchers have even worked on building fuzzy windshield wipers

(Cheok and collaborators, 1996). Fuzzy logic has many applications in

feedback control systems because of its ability to enhance the capabilities of

devices, reduce operating costs, and mimic human intuition (Chiu, 1998).

36

The fuzzy logic infrastructure of the Zuf system

allows users to control their hardware through

linguistic signifiers and conversational “If ...,

then ... “ sentences. The use of natural

language makes the process of programming

more intuitive and familiar for users with non-

technical backgrounds. Instead of writing discrete steps dictating exactly

how the hardware should behave, a user generates a collection of rules.

The mathematics behind fuzzy theory allows concrete control to be

generated from these rules, even if the rules are uncertain or conflicting.

Vague declarations for how a device should behave need not result in

uninteresting or inoperable programs, rather they might evoke obscure -

perhaps even charming - behavior due to the mathematics of fuzzy theory.

Fuzzy logic reasoning allows for organic behavior on the part of the devices.

A fuzzy algorithm works by applying a construct called a membership

function to a set of rules. Membership functions are graphical

representations defining how much an element belongs to a set. They place

a weight on the value of each input. Through a combination of scaling,

merging, and calculating the center of mass of all membership functions,

the fuzzy algorithm creates a discrete output value. Generally, membership

functions are triangular in shape, but can also be trapezoidal or bell shaped.

The area covered by a membership function determines how acutely and

strongly different elements belong to the set it describes.

37

The simple fuzzy algorithm implemented by the Zuf system proceeds as

follows. First, each input is mapped to a membership function. Second,

the input values obtained from the sensors are mapped to a membership

value obtained from that input’s membership function. This determines

the input value’s weight. Next, for each rule, the input value’s weight

scales the membership function of the rule’s output. Each rule is processed

mathematically and compared against values set by other rules using min-

max comparisons. Then, all scaled membership functions for an output

are merged together. After each rule has been taken into consideration, a

centroid calculation generates the discrete value for the output in question.

The centroid is calculated

using the following equation:

Fuzzy logic algorithms are capable of processing complicated rules that

relate several elements, using the boolean relationships AND, OR, and NOT.

These rules maintain the basic “If ..., then ...” structure, such as “If A and

B, then C.” The AND operation relates to the intersection of two sets. The

rule would be processed by taking the minimum of the weights of A and

B. The OR operation relates to taking the union of two sets, and rules

containing an OR relation would be processed by taking the maximum of

the weights. Finally, the NOT operation relates to the complement of a set,

and rules containing a NOT relation would be processed by subtracting the

weight from one.

In the context of computational fashion design, fuzzy devices make sense

as the glue to bind the behavior of output elements (i.e. motors, lights,

buzzers) to the values of input sensors (i.e. microphones, photoresistors,

fabric switches). The sensors trigger certain behavior from the outputs,

and one garment might contain multiple sensors or outputs. With each

additional component, the structure of the driving code increases in

complexity. However with a fuzzy device, the designer simply adjusts their

set of rules to accommodate for new components, and if some cases are

unaccounted for, the device still behaves reasonably.

mi xi

mi

 Σ i=1

i=n

 Σ i=1

i=n

38

Computational Literacy

In addition to the technical background, this research was built upon

theoretical ideas about computational literacy and a constructionist

approach to education. The goals of the Zuf system are to empower

designers, excite them about learning and using computational elements,

and to enable them to freely design with embedded systems as a medium.

The Zuf system must increase their level of computational literacy, therefore

it is more than just a development tool, it is an educational tool.

The Zuf system builds on the ideas of Jean Piaget, a child psychologist

who believed that intelligence is a form of adaptation, and knowledge

is constructed through the processes of assimilation and accommodation.

Piaget developed a theory called “Constructivism” that believes our

interaction with objects and events helps us conceptualize solutions and

ways of thinking.

To understand is to discover, or reconstruct by rediscovery,

and such conditions must be complied with if in the future

individuals are to be formed who are capable of production

and creativity and not simply repetition (Piaget, 1974).

Seymour Papert, a mathematician and one of the early pioneers of Artificial

Intelligence (AI), collaborated with Piaget for many years. Papert conducted

research on the ways technology can be used for learning and creative

thinking. Piaget’s theory of constructivism helped Papert develop his own

theory, which he called “Constructionism.” Constructionism adds an extra

layer, asserting that people construct ideas most effectively when they are

constructing personally meaningful objects.

39

Constructionist ideology resonates with this research and my desire for

computational designers to have the skills and access to build any

component of their work, to learn about their relationship to technology,

and to develop depth in their projects as a result of exploration during the

development process.

Seymour Papert is interested in the kinds of computational models that

lead to better thinking about powerful developmental processes (Papert,

1980). In my work I am trying to construct such a model for hardware

development by fashion designers. My research in embedded system

design has been influenced and informed by many existing educational

programs available on the market and within academic research settings. Its

theoretical foundations lie in the research about ways people learn through

designing with technology, such as the writings of Seymour Papert, Mitchel

Resnick, Sherry Turkle, and Alan Kay, to name a few.

Computer Literacy can be defined as knowledge or competence with a

computer, such as having the ability to turn it on, play a CD-ROM, browse

the web, or use the mouse. As Andrea diSessa describes in his book,

Changing Minds: Computers, Learning, and Literacy, computational literacy

is different than computer literacy, for it goes beyond a casual familiarity.

On a large scale, computational literacy would enable civilization to achieve

things previously unimaginable (diSessa, 2000). For this thesis, the term

“Computational Literacy” means having the ability to program or take

advantage of the computer’s ability to compute, as well as having an

awareness of the internal hardware and processes of a computer. The

term refers to both the operational understanding of a computer and the

ability to utilize the computing power of a hardware device or machine.

Computational Literacy implies an intuition about how computers work and

how they can change or impact the ways we think and view the world.

40

Concepts about transparency are important to this work as well. Sherry

Turkle describes the idea of “transparent” computing in her book, Life

On The Screen: Identity in the Age of the Internet. According to Turkle,

transparent computing once referred to the idea that software programs,

operating systems, and user interfaces didn’t block a user from being able

to “get inside” the machine and take control over what was going on

at the machine code and hardware level. Nearly ten years later, however,

the definition of transparent computing had shifted. People who spoke of

transparency meant that their machine didn’t block them from getting work

done. Their machines were transparent because they could “easily see how

to make it work” without necessarily knowing how it’s working underneath

(Turkle, 1995).

Both of these definitions of transparency apply to the construction of the

Zuf system. On one hand, the fuzzy logic control is a form of the second

definition of transparency in that it allows designers to get their work

done without necessarily understanding the process behind it. On the other

hand, the system supports the initial definition of transparency because it

encourages designers to make computation transparent by enabling them

to build and construct technology themselves.

The target audience will be interested in building garments and finding

the beauty in computational components. The instruments they use should

enable them to create projects that reflect these aesthetic standards. As

Resnick states in his paper, Beyond Black Boxes: Bringing Transparency and

Aesthetics Back to Scientific Investigation,

The merits of the instrument-building tradition go beyond the

immediate needs of research. Indeed, one element of that

tradition is a design philosophy that emphasizes elegance and

beauty in the material objects of scientific work (Resnick, 2000).

41

Several systems have been designed by Prof. John Maeda and by Ben Fry

and other students in the Aesthetics + Computation Group at the MIT

Media Laboratory that focus on the aesthetic merits of scientific work.

Design By Numbers (DBN), and Proce55ing are two systems that introduce

basic ideas of computer programming within the context of graphic design.

In DBN, dots, lines, and fields are drawn using computational concepts like

iteration, repetition, variables, and conditional statements. Proce55ing is a

learning program and environment for creating systems in JAVA with real

time three-dimensional graphics, color, and other features that DBN lacked.

The spirit of Proce55ing is to act as an electronic sketchbook where people

can learn the fundamentals of computer programming within the context

of the electronic arts (Reas, 2003).

“It is (Maeda’s) belief that the quality of media art and

design can only improve through establishing educational

infrastructure in arts and technology schools that create strong,

cross-disciplinary individuals” (Aesthetics + Computation

Group, 2003).

DBN and Proce55ing are powerful educational tools designed for adults, but

they only allow users to create programs that manifest themselves on the

screen. With Proce55ing, they can create beautiful graphics that are both

interactive and dynamic. Other programming systems are also limited to

the screen. Squeak, a project developed by Alan Kay and colleagues, is a

program designed for children to express ideas about math and science. On

the Squeakland website it claimed that its threshold is set low enough for

five-year-olds. With Squeak, users can build computational systems.

Squeak is an idea processor for children of all ages

(Squeakland, 2002).

42

Boxer is a project that began at MIT but is now under development at UC

Berkeley. Boxer is a computational medium based on a literacy model, and

designed for building screen-based tools with ease (diSessa, 2000).

In each of these programs, users are unable to extend the concepts into the

physical realm of hardware control. Other groups, however, have explored

ideas about hardware control. For example, members of the Lifelong

Kindergarten Group (LLK) at the MIT Media Laboratory are working on the

development of educational tools for learning concepts about hardware

and computation. Over the past decade, LLK worked on the development

of Programmable Bricks. Programmable Bricks are tiny computers that

control motors, receive information from sensors, and communicate with

infrared. The bricks can be used for robotics or other investigations, such as

body-monitoring and data collecting.

Programmable Bricks have expanded into two areas. On the industry

side, they became the foundation for LEGO Mindstorms, a commercially

available toy that lets users build robots and computational projects using

LEGO blocks. Academically, the Programmable Bricks evolved into tiny

computers called Crickets. Crickets are controlled using a dialect of the

Logo programming language, called LogoBlocks. LogoBlocks is a procedural

language that includes constructs like if, repeat, and loop, among others.

Users program by snapping graphical blocks together, much like snapping

LEGO bricks into place. (LLK, 2002).

43

In addition to Crickets, I worked with my colleagues Justin Manor and

Simon Greenwold to create a programming environment and language

called Nylon that lets users write the controlling code for programmable

devices in addition to developing dynamic graphics. Nylon builds off DBN in

that it was designed for artists and visual designers. Nylon and LogoBlocks

are each very powerful and are used in a variety of educational settings,

however they are based on procedural languages and follow traditional

models of computation. For this thesis, I move one step further to develop

a system that doesn’t rely on procedures and algorithms, but instead upon

the structures of natural language and fuzzy logic calculations.

All of the work in this chapter has provided the framework upon which I

am building the Zuf system. Without the theoretical foundations of such a

varied collection of educational systems, it would be difficult to understand

and discuss the intricate relationships and experiences that adults and

children have with computational systems. These programs and projects

provided my work with a basis to expand upon, both conceptually as well

as in execution.

Chapter Three

Preliminary Work

An important component of this research has been

the process of building garments and thinking about

computational garment design. A collection of garments

and handbags were constructed that explore the different

conceptual spaces of computational garment design. This

component of the research is two-fold. On one hand

it facilitated the process of defining and clarifying the

field of computational garment design by illustrating

key characteristics in each garment, while on the

other hand, the garments helped pinpoint particular

problematic spaces or challenging tasks that designers

would encounter during the development process of their

own garments. The projects described in this chapter made

it possible to isolate the needs and concerns of designers

building computational garments, and this knowledge was

used to develop the Zuf programming system.

Whether we decide to fight them or join them

by becoming computers ourselves, the days of the

human race are numbered.

Katherine Hayles discussing the computational universe, 1999

46

The following collection of work directly correlates design decisions that

went into the development of Zuf. The decisions include the ability

to program devices over the Internet or to easily redesign relationships

between sensors and outputs. The work also illustrates different properties

of computational garments, such as being reactive, dynamic, mechanical

or mutable. In addition, these garments helps us understand the

social, emotional, personal, and aesthetic characteristics of computational

garments, pressing our understanding beyond simply technical knowledge.

Reviewing this collection of work adds depth to our understanding of

computational garment design.

Peppermint

Peppermint is a handbag designed to provide information to its owner

over time in a way that is meaningful to the owner but ambiguous to

others. Peppermint is a conceptual piece that wasn’t implemented, however

a prototype of its form was built and 3D CAD models of the bag were

generated using Rhinoceros, a NURBS modelling software for Windows. The

front plate of the bag was built from laser cut acrylic and implemented

using a collection of eight servo motors.

The idea behind Peppermint was to build a

bag that subtly informs the owner of specific,

important events during the day. The time

of the events would be progammed at the

start of the day by the owner, through

a serial interface and simple software that

runs on a personal computer or portable

device. Small rotating discs are fixed on the

front plate of the bag and move around in

slow, elegant, and methodical patterns. As

the notable event (an appointment, meeting,

test, show, etc.) comes near, the discs alter

Top view of the Peppermint prototype, 2001.

47

their speed and the pattern in which they move. These subtle changes occur

gradually, becoming more intense as the event approaches, thus triggering

the memory of the owner. Quicker, more sporadic behavior alerts their

attention to the bag, reminding the owner of the event programmed at the

start of the day. Much like the way people tie a ribbon around their finger

or keep a rubber band around their wrist as reminders for an important

event, Peppermint uses non-explicit methods to trigger the memory of its

owner and keep their schedule in tact.

Typical alarms beep or sound in loud and often annoying ways, interrupting

the public soundscape and drawing unnecessary attention to a person.

Peppermint, on the other hand, is a non-imposing alarm that reminds the

owner through a change in his or her perception. Other people who see

the bag might take note of the fact that its behavior changes over time and

may find it interesting because of its aesthetic, however

they would be unaware of its ability to trigger memory,

and unaware of the meaning behind its kinetic patterns.

The beauty behind the aesthetic design of the bag

would act as a mask to the world, keeping its secret

capabilities and intents hidden to all but the owner in

the same way that it hides and protects physical objects

carried within the bag.

Peppermint is an example of a garment that would

require new information to be loaded into it frequently.

Users of a garment like Peppermint might not be

able to bring their laptop or desktop computer with

them everywhere, yet they might want to reprogram

Peppermint while travelling or away from their personal

computer. Peppermint was a major motivating factor

in the decision to create a system that is programmed

over the Internet. Being able to communicate with your

garments regardless of where you are seems important

since clothes are inherantly mobile and non-static.

Left: 3D rendereing of Peppermint,

2001. Right: front view of the

Peppermint prototype, 2001.

48

Belly

Belly was intended to help designers think about and

visualize the space of the body and spaces around

the body that our clothing and technology inhabit.

By designing garments with careful consideration to

their form, shape, size, and weight, technology can

be embedded into garments that don’t weigh down

the wearer or cause undue stress or strain upon their

body. It also means that technology can be embedded

in such a way that it becomes virtually invisible to

the wearer. Lighter and more flexible components are

being developed in the electronics industry,

however there is still a long way to go until

electronic components are trivial in size and

weight. Therefore it is extremely important for

designers building computational garments to

think about the spaces technology takes up

and how they impact the movement and

physical comfort of the wearer.

Belly is a series of 3D CAD renderings of a

human form wearing a backpack that morphs

to the shape of the human’s body. The

bag is designed to provide enough physical

space for the technology which drives the

computational element of the bag, and for

the storage and carrying capabilities of the

bag. The technology is embedded in a space

that rests along the small of the back and

is out of the way of excessive movement

and contact with the body. This protects the

technology from damage, and protects the

human from discomfort.

3D renderings of Belly, 2001.

49

Elroy

Elroy was the first fully operational and wearable garment completed

for this research. Elroy is a dynamic, illuminating dress that encodes the

time of day and displays it on the wearer. The hours of the day are

encoded in binary along the right breast, while the minutes are broken

into fifteen minute periods and flash down the left leg. Elroy contains

several Panasonic electroluminescent (EL) panels cut to size and sewn

into the dress. The clock and signalling is controlled by a Rabbit 2000

microprocessor, a product of Rabbit Semiconductors. An inverter turns

the five volt DC signal into 120 volts AC current needed to light the

EL panels. The inverter is made by JKL Components Corporation, part

number NDL-217. Each panel also needs an optoisolator, which allows the

logic levels from the microprocessor to control the on/off states of each

panel, switching the AC current on and off. The optoisolator used in Elroy

is the MOC3043 from Fairchild Optoelectronics Group.

Elroy is sundress made from green, water-resistant polyester fabric. It has

wide, one-inch straps that leave the shoulders and meet at a T along the

nape of the neck. A zipper runs along the back of the dress, from the

neck to the waist. There are seams along the left leg that border the

electroluminescent panels, seams around the right breast, surrounding

the chest panels, one seam that runs along the hips entirely around

the dress, separating it into a low-waisted garment, and a seam that

runs directly down the center of the

dress vertically, on both the front

and back. The seams are visible but

stitched using army-green thread so

as not to draw the eye’s focus away

from the illuminating panels.

Photograph of the Elroy

hour panels, 2001.

50

The pattern of the illuminating panels behave

in the following way. During the first fifteen

minutes of an hour, the top panel on the

leg flashes once every five seconds for the

first five minutes, twice every five seconds

for the second five minutes, and three times

every five seconds for the last five minutes.

During the second fifteen minutes, the top

panel stays lit while the second panel down

from the top flashes in the same pattern.

During the third fifteen minutes, the top two

panels stay lit while the third panel flashes,

and so on. The panels reset at the top of each

hour and repeat this behavior.

The four panels on the chest, which encode the hours, change patterns at

the top of each hour, remaining in one illuminated pattern during the entire

hour. Each time one of the minute panels flashes on, the hour panels turn

off briefly. This design is for two reasons, the first to save power by reducing

the number of panels simultaneously lit. The second reason is to add more

dynamic and eye-catching behavior to the dress.

The binary pattern for the hour panels was determined by numbering each

panel in a clockwise manner from zero to three, starting at the top left. The

zero panel represents the 20 place, the one panel represents the 21 place,

the two panel represents the 22 place, and the three panel represents the

23 place in binary representation. Every hour from one o’clock to twelve

o’clock in a twelve hour time cycle can occur, since only four binary places

are needed at maximum to encode the numbers one through twelve.

51

Elroy plays with the idea of being able to obtain information from our

clothing that is meaningful to the wearer but not to the general public,

much like the idea behind Peppermint. The time information displayed by

Elroy is encoded in such a way that external viewers would not understand

that it tells time if they passed the dress on the street. With practice,

however, the information can be quickly decoded by the wearer with a

quick glimpse. The panels are located in positions easily grazed by the eye,

continually providing the wearer with a sense of the passing time. Elroy

has meaning to one specific, intended person, but not to the public at

large. With so much information that can be collected, stored, and viewed

through the use of sensors, infrared, or

wireless communications, it is important for

designers to think about how the information

is made available and processed. Questions

must be asked during the design process

about whether it is necessary for one person,

a small group of people, or the entire public

to be able to understand the information

displayed by our clothing.

One area that would be interesting to explore

is the development of visual languages for the

body, designed so that subsets of people can

understand data and interact with garments

to display information on demand or to

input information at whim. The languages,

a form of “body slang,” might reflect

varying cultural or style differences among

groups of people. They might relate to the

gestural languages currently being researched

to improve human-computer interaction.

Elements of these languages could also be

tailored to exploit the relationship between

human, body, and clothing.

Top: image of Elroy’s minute panels. Bottom:

Elroy in use by the author. 2001.

52

Since Elroy was the first garment I built for this research, and also

the first time I programmed for the Rabbit2000 microprocessor, I was

amazed and daunted by the slow learning curve required to use the

hardware. First, the development environment for the microprocessor

was not intuitive to use. It comes equipped with debugging capabilities

that I hardly took advantage of because the documentation about how

to use the debugger was poor, and because it assumed a very low level

understanding of the hardware, an understanding that was uneccesary

for my project. Second, the language and methods for addressing the

input and output pins took many weeks to master, as they were again

established assuming a very low level understanding of the harware.

When designing the Zuf system, it became a requirement that both the

interface and simulation did not prove to hinder or block novice users

from being able to succesfully think about, design, or use an embedded

device. As their experience with the devices increases, they might chose

to switch to more sophisticated methods which let them work with the

microcontrollers on a low level. However, for an entry level tool that

should help encourage, entice, and excite designers, such requirements

are unnecessary and counter-productive.

Left: Sketches of the Elroy time sequencing.

Below: Elroy in use by a model, 2001.

53

All images on these pages

are sketches of Elroy’s

hardware, drawn by the

author, 2001.

54

Iris

Iris is an example of a reactive garment.

It is a small handbag that contains two

electroluminescent panels, a piezo buzzer, and an infrared sensor. When

the sensor detects motion of the bag moving past the body of the wearer

or past objects in its vicinity, the panels and buzzer respond in a quick,

alternating rhythm. The result is a playful interaction between wearer and

garment that resonates with the bag’s movement.

Iris explores ideas about interacting with and altering our garments based

on our physical behavior. The way our body moves in our clothes and

in relation to our accessories has strong effects on how long a garment

lasts, where it wears out or breaks down first, and how it make us

physically feel when we wear or carry the item. The way our garments

move will also impact the computational components of technologically-

enhanced garments, in both destructive and constructive ways. Constructive

ways include intentional aesthetic changes, protective strategies to prolong

usability, or triggers to change a garment’s dynamic behavior. Sensors

might detect that the garment is moving or being jostled, versus when

it is inactive or still. They might detect when the garment enters a room

with hotter or colder temperatures or varying light levels. They might

sense when the garment is in contact with the body or other objects.

Each of these inputs can trigger the garment to change its state, such

The internal ciruitry for Iris, 2002.

55

as small changes in color or light, as well

as larger changes such as structural shifting

or changes in material properties. In essence,

the garments become alive. On the contrary,

destructive ways include breakage, general

wear and tear, power shortages, or possibly

erratic and unpredictable behavior.

Iris was built using the Nylon system,

an integrated software and hardware

development platform described later in

this chapter. Using the system made the

development of Iris very fluid, and helped

me realize the concept quickly. The project

was especially fun to build because of the

ease at which I could move between building

the bag, working on the hardware, sewing,

and programming. Iris verified the importance

of having an integrated system aimed at

designers. Its only drawback was the reliance

on Nylon’s procedural language. The fuzzy

logic reasoning implemented in Zuf would

have made the construction of Iris even more

fun, more elegant, and more robust. Less

time needed to be spent calibrating the input

sensor for exact values and worrying about

covering all cases so the system didn’t fail. The

fuzzy logic algorithm used by Zuf would have

meant I needed to establish only a few rules in

order to generate the same behavior.

Images of Iris in use by the author, 2002.

56

Saturnpants

Saturnpants are kinetic Capri pants

that detect the proximity of

approaching strangers and respond

to the direction of the stranger’s

movement and distance from the

wearer. Soft fabric shapes dance

around the legs of the pants. The

direction in which the shapes turn

and the position in which they stop

directly correlates to the movement of

an approaching or retreating person.

Two servo motors and one ultrasonic sensor are embedded into the

garment. The sensor is made by Devantech and is called the SRF04

UltraSonic Ranger. It measures from three centimeters up to three meters

in distance. The device runs on five volts, weighs 0.4 ounces and is just

over an inch and a half in length. Positional control of each motor is

determined by taking the input from the sensor, processing it with a PIC

microcontroller, and outputting the appropriate pulse-width modulated

(PWM) signal to the motors.

Saturnpants are made from orange and green wool, and fit a woman of

dress size eight. The one and a half inch waistband is secured by Velcro

along the front. There are no pockets on these pants. The back of the left

leg from the center seam to the left side seam are made of green wool,

whereas the rest of the pants are a salmon colored wool. The right leg

has three patches sewn to the surface. One green patch is placed halfway

down the leg just to the back of the side seam, and contains the sonar

sensor, which peeks out through two holes. The second green patch is

The rotating shapes on Saturnpants, 2002.

57

placed four inches from the hem of the leg, just to the front of the side

seam. It contains the servo motor which controls the circle shape. The third

patch is salmon and is just to the back of the side seam, two inches above

the hem. It contains the servo motor which controls the square shape. Wires

that connect the sensor and two motors to the PIC run along the side seam

and convene at the hem of the right leg.

Much like Iris, the Saturnpants project explores ideas about garments which

respond to external stimuli and environmental changes. The difference

between Saturnpants and Iris is that one exhibits changes through kinetic

motion while the other exhibits changes through light and sound. It is

important to recognize the different ways in which garments can be altered,

as we are not limited to simply one kind of technology or one type of

dynamic behavior.

Building Saturnpants required a lot of patience to test different behaviors

with the shapes. I played around with the speed and abruptness at which

the shapes responded in order to elicit different emotional reactions from

people who interacted with the garment. Slow, subtle changes created a

different reaction and felt less playful than quick, jumpy behavior. Each time

that I decided to try new behavior, I had to wait through a several minute

cycle while the code compiled and burned onto the PIC microcontroller. This

bottleneck discouraged me from making many changes or experimenting

with the garment.

This project helped me realize the importance of being able to quickly

change code that runs on a device. It also brought to light the value in a

software simulation. I would not have had to wait through the compile/burn

cycle just to test a new behavior or debug an interaction if I could have

simulated it in software first. I took both of these realizations to heart when

building the Zuf system. It is important that a program like Zuf lets designers

easily and quickly experiment with their code and with the behavior of the

garments they are building.

58

Scribble

Scribble is a software program that lets a user

quickly illustrate and render a pattern for a skirt.

The program allows the user to computationally

generate the pattern printed on the garment, then

it outputs the rendered design to a PostScript

file. In a matter of minutes, hundreds of different

designs can be generated and queued up for

printing. The file contains the outline of a basic skirt

pattern so that the printed material is ready to be

cut and sewn together directly after printing. The

process not only eliminates the step of cutting and

pinning fabric and paper patterns for clothing, but

it also lets the user regain an element of control

over the design of their clothes. A large format

inkjet printer, such as the DesignJet 1055CM from

Hewlett-Packard, can print the rendered files onto a

large roll of cotton fabric or other materials.

The software for Scribble was written using

Proce55ing, a language developed by Ben Fry

and Casey Reas, of the MIT Media Laboratory

and Interaction Design Institute Ivrea, respectively.

To use the software, the designer follows three

steps. First, simply draw a line pattern, then click

the mouse. Next, adjust the spacing between a

repeating pattern of these lines, then click the

mouse. Finally, adjust the line width and coloring.

Upon clicking the mouse after this final stage, the

postscript file is rendered and ready to be printed.

Images of skirt patterns

generated by Scribble, 2002.

59

When designing Scribble, I imagined being able to use technology to

design and build new clothes each morning before going to school or

work. I envy the idea of having my entire wardrobe hand-crafted to fit

my body perfectly, but do not want to sacrifice the ease and simplicity

of going to a store and purchasing an item directly off the rack. Scribble

toys with the idea of disposable clothing that comes and goes with

each day.

Women in the early to mid 1900’s went to dressmakers for the hottest

fashions of the day, a concept alien to most women and girls in

today’s society. Instead, modern women rely on ready-to-wear clothing

for a significant part (if not all) of their wardrobes. This changes

the relationship women have with their clothing. Mass production

revolutionized the fashion industry forever, but it also altered our

mindset about the permanence and fluidity of our wardrobes.

The Scribble technique creates a dual commentary on the fabrication

of fashion garments. The speed and simplicity not only contrasts the

carefully constructed dressmaker’s clothes, but it also contrasts the

generic clothing we buy in our local chain store because of the wearer’s

involvement in generating the design of the fabric. The design process

behind the construction of ready-to-wear clothing is completely isolated

from the customer.

Scribble is powerful because it lets users see and build garments of

their own design in a quick, step-by-step process. The interaction,

visualization, and customization of Scribble give the user a sense of

ownership over what they create. The process is easy and clear. When

thinking about the design of the Zuf system, I wanted the process to be

easy and clear as well. The step-by-step approach works well for novice

designers, and the minimal interface helps keep the focus and concepts

of the project clear. Finally, the visualization of the system in the software

simulation provides the user with that sense of ownership, involvement,

and understanding that is so useful in the Scribble software.

60

Nylon

The Nylon system is an integrated programming environment for interactive

computer graphics and hardware controlled by a microprocessor (Aesthetics

+ Computation Group, 2003). It was developed in the spring of 2002 by

myself and my colleagues, Justin Manor and Simon Greenwold.

The Nylon board was designed for prototyping hardware. It can be

programmed directly from a computer’s serial port using the Nylon

software. The basic syntax of the Nylon language is much like Java or

C, however special linguistic constructions were designed to control the

hardware input and output pins. The language is versatile because it lets the

user elegantly control both the hardware and software components as an

integrated and intertwined system.

Screenshot of the Nylon development environment, 2002.

61

The Nylon programming environment is the development

hub of the Nylon system. It brings together the written

code, software simulations, and hardware module. Code

can be written and interpreted in the environment, then

run in a simulation mode. Once a user is satisfied with

the behavior of their code, they can attach their hardware

module to a serial port and upload their code with the click

of a button. In addition, we developed a 10x14 LED display

called Hotpants, that attaches to the Nylon hardware and

runs computer graphics generated by the code.

The programming environment contains a text editing

space to write code, a simulation space where the input

and output pins of the board are simulated, and the ability

to add and remove displays so that graphics code can

be simulated on the computer screen as it would appear

on a Hotpants display. Pausing, resuming, and debugging

capabilties exist in the Nylon environment.

Working on Nylon was a great introduction to building

an integrated system like Zuf. Many of the design

decisions that went into Nylon were tested by a class

of undergraduates who used Nylon for their assignments.

Feedback from the students in regards to the language,

the interface, and the hardware component proved to be

invaluable when I set out to build Zuf. I was able to address

mistakes made in Nylon when building the Zuf simulation,

and when creating the Zuf interface.

Chapter Four

Zuf: A Fuzzy Control System

This chapter discusses the Zuf system in detail, first

giving an overview of the system and its parts, then

discussing the development process when using Zuf with

a concurrent discussion of all components in detail.

Finally, the chapter wraps up with a discussion of

improvements for the system as a whole.

Zuf is a programming system for controlling small

embedded devices and microcontrollers using fuzzy

logic. It was designed for fashion designers interested

in building computational garments, however the

underlying concept and process is applicable to many

fields of research and development.

Intelligent systems should be able to reason about

their own knowledge.

Terry Winograd, Fernando Flores

64

System Overview

Zuf is a web-based application which runs on a remote

server rather than locally on a designer’s machine, like most

development environments. Designers access the system by

visiting the website from a remote location. To write a

fuzzy program, users must first step through a series of

web pages, where they are prompted to specify and name

input and output modules attached to the device they are

controlling. Next, they specify a bank of “If... then...“ rules

that controls the fuzzy-logic reasoning. Finally, a software

simulation of the fuzzy code generated by Zuf illustrates

exactly how the device will behave given the rules the user

has established.

At any point during the process, users can step back

and change parameters, names, or rules.

For instance, if it is found during the

simulation that the device is behaving

differently than anticipated, a user is

free to alter the behavior in several

ways. The user might delete rules

which were already established. The user

might also add new rules or change existing

rules. Perhaps the user would find that one

A graphical model of the Zuf system, its

components, and their interactions.

65

of the inputs is irrelevant, and can therefore be removed from the

design. Zuf lets them play with the code in a trial-by-error fashion.

The user can see directly how changes affect behavior, and in the end

the programmer develops a more intuitive sense about the relationship

between hardware, software, and human interaction.

There are three main components to the Zuf system. First is the

client, or end-user. The client accesses Zuf from a remote location in

order to build the program for the device. The client should have in

possession easy accessibility to the second component of the system,

the embeddable device. For the first iteration of Zuf, the embeddable

device is required to be the BL2000 microprocessor module from Rabbit

Semiconductors, otherwise known as the Wildcat. Future iterations will

allow for the client to choose between a Wildcat, PIC microprocessor,

BasicX module, or other popular system. The main constraint on a

client’s choice of device is that the device needs the capability to

communicate via TCP/IP in order to download information from the

Zuf web server.

The third component of the Zuf system is the web server, which houses

the development environment and software simulation. The interface

for the development environment is powered by Java Server Pages (JSP).

It consists of a JSP engine which dynamically generates HTML pages

with each request from the client’s computer. The interface collects

information from the client about device peripherals and behavior,

storing this information remotely on the server. The JSP pages modify

the interface dynamically to reflect the client’s input as they step

through the programming process.

66

A screenshot of the first step in the Zuf system,

entering information about the input devices.

Development Process

There are three steps to this process, which include defining the inputs and

their states, defining the outputs and their states, and establishing a bank

of rules. The inputs and outputs are established by providing a name and

linguistic modifier for the low state, middle (neutral) state, and the high

state. Although the fuzzy calculations are done on a continuous spectrum

between the high and low states, only three modifiers are provided which

approximate what range the component is in at any given time.

67

The user enters all of this data into two sequential web

forms. Then at the third step, the rules are generated

through an interface that dynamically regenerates English

sentences describing the rules, depending on which input,

output, or states are selected. This is done through radio

buttons. A running list of the rule bank is updated at

the bottom of the page. There is a check box next to

each rule that lets the user remove a rule if so desired.

Repeated rules or conflicting rules are allowable in this

system, and will not break the functionality of a device.

However users might want to delete rules because they

affect the behavior in undesirable ways. All computation

which happens during these steps is processed remotely

on the Zuf server. The software simulation, however, is

run locally on the client’s computer and consists of a Java

applet generated during the last stage of the interface.

The JSP engine which drives the development environment

ensures that the most recent information gets passed from

the Zuf server during simulation.

A screenshot of the second

step in the Zuf system,

entering information about

the output devices.

68

While running, there are two modes in the simulation, a straight-forward

visualization of the embedded device and a graphical illustration in the

context of computational garment design. In both modes, the client has

the ability to manipulate simulated input values and view how the output

modules are affected by input changes and the fuzzy computation. Located

on the screen during both modes is one slider per input module. The

client manipulates the value of an input by dragging the mouse on

the corresponding slider. In the first mode, dynamic graphs of the fuzzy

membership functions and the changing output values are drawn on the

screen in real-time. Toggling to the second mode lets the client watch

illustrations of motors, lights, or other output modules as they change state

in response to the changing inputs.

A screenshot of the third step

in the Zuf system, establishing a

bank of rules.

69

In the first mode of the simulation, the users view a collection of dynamic

graphs to monitor if their device behaves reasonably with the rules they

generated. First, there are graphs of the voltage level that appears on the

output pins. The graphs visually originate from a picture of the device and

scroll dynamically across the screen. The graph maps to the output value at

any given time during execution. It is directly affected by the input values

and are the result of processing through the fuzzy logic algorithm. The

client can watch the graph change over time and it quickly becomes clear

whether the device is behaving in a reasonable manner.

The second type of dynamic graph that appears in the first mode is a

mapping of the fuzzy membership functions and their center of mass. Each

output has a final membership function which determines to what amount

the output should belong in the fuzzy set. The value read on the output pin

is generated by taking the center of mass of the final membership function

as it changes. These graphs help the user develop an understanding of why

they see the values they see and how the fuzzy calculations are affected

by the input values.

A close-up screenshot of graphs during the

device simulation.

70

In the second visualization mode of the simulation, the client sees the

system in an abstract, general form. This mode is designed specifically

for the context of fashion design, however one can easily imagine the

illustration being tailored to many industries or applications. In this case,

each output has an image of itself drawn in relation to the body or as

an integrated feature on a garment. Each garment hangs from a hanger

on a bar which spans the screen. The idea is to give the feel of stepping

into someone’s closet, where all the clothes are dynamic and reactive. The

technology is so embedded into the scene that it is ubiquitous and thus

renders itself both invisible and irrelevant to the idea behind the garment

being constructed.

Screenshots of the fourth step in the Zuf system,

simulating the device behavior.

71

In both modes, each input is clearly labeled by

name and state. For instance, lets say a client

defines an input called “Microphone” which has

the low state of “Quiet”, the neutral state of

“Hum” and the High State of “Blaring”. As the

value of the microphone input slider is adjusted

in the simulation, the client is automatically

informed which state the microphone is in rather

than regurgitating a numerical value. Numerical

values of the inputs can be arbitrary and thus

meaningless to the user’s understanding of the

code. Numerical values are tuned specifically for

the embedded device and input module and vary

from system to system. By knowing linguistically

which state the input is in, the client obtains a

more rich understanding of the device behavior

and intuitively how it is affected by the rules and

sensory inputs. The user’s understanding becomes

qualitative rather than quantitative.

A closer screenshot of the simulation mode in the Zuf system.

72

Once the designers are

happy with the behavior

they designed through the

Zuf programming system,

they are ready to load the code onto their embeddable device. If it is their

first time using the device, they must put a bootloader program on the

device before programming it. This program allows the device to easily load

and run fuzzy programs designed using Zuf. The devices discussed for use

with this research are commercially available microcontrollers, and therefore

not ready to load Zuf programs off the shelf. The bootloader only needs

to be put on the device the first time a designer uses it. From that point

out, they can program their controller by powering it up while connected to

the Internet over TCP/IP. One input pin is designated on each device to be

a momentary “Program” switch. When pressed, the device queries the Zuf

server. If code exists for the device then it loads and runs this new program.

Otherwise, it continues to execute the code currently saved in memory.

An ideal solution to the bootloader problem would be to design Zuf

hardware which has the available features of commercial microcontrollers,

comes ready to load and run Zuf code, and is inexpensive. Until such

hardware exists, the bootloader is a non-ideal solution to the problem.

Loading the bootloader will require that the designer use the development

environment which comes with their devices to open and load the

bootloader code. This unfortunately means that the designer will have to go

through the steps of installing the IDE and dealing with the programming

cables and other hassles that come with programming microcontrollers.

A screenshot of another mode

during the fourth step in the

Zuf system, simulating the

device behavior.

73

The bootloader is written and available for the devices ahead of time so

that the designer does not have to program the bootloader on their own.

An advantage to using the bootloader program is that experienced users

are now given the ability to modify parameters in the bootloader code that

fine tunes their device behavior, such as changing the pins each input and

output are connected to or adding functionality for more complicated input

sensors and output devices. After customizing the bootloader, experienced

users only needs to load it once, then they can run Zuf code easily using

the TCP/IP connection. This cuts down on compile and load time, and

makes the programming process smoother, faster, and less complicated. The

reasoning process of the device can be changed easily and quickly without

having to reload the driving algorithms for the hardware.

Improvements to the System

The basic structure of the Zuf program was completed for this thesis.

However there are many areas where the system can be improved, by

adding more functionality and usefulness to the tool. These areas are listed

below.

. Develop hardware modules that plug into the devices

easily, removing the need to build interface circuitry between

hardware and input/output component. This would be a

starting point for hardware development, providing a toolkit

of existing circuits for the designers to use. This would include

both input sensors and output devices. For example, to attach

a DC motor to the Wildcat, a motor driver chip is required to

source the correct amount of current without cutting power

from the processor.

74

. Create a robust back-end for the server which lets users log in,

develop a variety of projects, and have access to all variations of their

code. This would require implementing security features in the Zuf

web server to control who has access to information saved on the

server. It would also require setting up a database for storing and

retrieving code, such as the open source database, MySQL.

. Create a community for Zuf users to share code or expand

components and functionality of the system. This would require

implementing a shared space on the website for discussion boards

and galleries of work. This could continue to be implemented using

Java Server Pages.

. Improve the software simulation so that designers can build their

own visual representations of the outputs, or view both modes

simultaneously.

. Handle the identification of devices more elegantly. Move

identification away from static IP address identifiers. Implement a

system to authenticate identity. One way to implement this would

require users to register their device when they begin development

in order for the Zuf server to assign a unique identifier to it. The

identifier could then be included in the bootloader code. Another

implementation would allow the User to choose an identifier for their

device that is approved by the Zuf server to avoid duplicates.

. Implement DHCP capabilities for the devices.

. Implement the system for use with many devices and

microprocessors, moving from just the Wildcat to devices such as PIC,

BasicX, etc. This would require writing the necessary driving code for

each device that allows them to run the fuzzy logic algorithms. It

would also require adding TCP/IP circuitry to those devices that do

not come equipped with Internet capabilities.

75

. Allow for more complicated rules in the fuzzy algorithm.

This would require updating the software interface to

include rules relating multiple devices in “If... and..., then...”

statements. It would also require updating the driving code

on the devices to handle these rules.

. Allow for tweaking membership functions and other

components in the fuzzy code, such as moving from the min-

max centroid calculations to other methods.

Each of these improvements would add more functionality to the

tool without changing the basic concept or goals of the Zuf system.

Certainly other improvements could be made to the system that

are not listed above. When designing a tool, it is important to get

feedback and information from people who would use the it. This

enables the designer to create a system that is robust and complete

and goes beyond the expectation of the User.

Chapter Five

Application & Analysis

In order to evaluate this software as a useful tool for

designers, I first had two non-technical adult professionals

use the software to evaluate the interface and conceptual

grounding of the system. I wanted to evaluate Zuf’s

ability as an educational tool and to evoke inspiration

and computational literacy. Second, I used the software

to develop a computational garment of my own in

order to test the feasibility of building projects with

the Zuf system. Finally, I worked with a class of

design students to refine the needs and goals of such

a system for fashion designers, and to analyze the

usefulness and need for such a tool for their work.

The bicycle without a rider balances perfectly well.
With a novice rider, it will fall. This is because the
novice has the wrong intuitions about balancing and
freezes the position of the bicycle so that its own
corrective mechanism cannot work freely.

Thus learning to ride does not mean learning to
balance, it means learning not to unbalance, learning
not to interfere.

Seymour Papert

“MindStorms: Children, Computers, and Powerful Ideas”

78

Powerful Ideas and Computational Literacy

Many adults get anxious and nervous when confronted with the idea

of programming or getting inside electronic devices to learn about and

control their behavior. Through my experience teaching workshops on

computational design and also showing my own parents and siblings

the work I do as a masters student at the Media Laboratory, I have

seen that adults can get excited about programming when someone is

with them to hold their hand and explain what is going on. However

several people have admitted that they would not attempt such projects

on their own. They recognize the power of computation and their

dependency on computational objects, but the infrastructure of such

devices is otherworldly. The “guts” of their machines occupy a space they

dare not tread. This realization became important to me as I set out to

design the Zuf system and to refine my ideas about computational garment

design. How could these garments aim to inspire them to learn more about

computation? How could a system like Zuf and a fuzzy logic approach to

programming microcontrollers and embedded devices inspire them to get

their hands dirty and build projects of their own?

79

To evaluate the ability of the Zuf system to stimulate powerful ideas and

develop computational literacy, I tested the system with two non-technical

adults. The adults, Heather Casey and Laura Davis (whose names have been

changed), were able to discuss with me the ability of Zuf to evoke interest,

creativity, and ways to conceptualize ideas about computation. During this

stage, I was not concerned with the literal application of Zuf to garment

design, but rather its ability to reach out to adults, in particular adults

that have never programmed before and do not consider computers to

be integral to their design or work process. I wanted to know whether

Zuf helped users conceptualize the functionality of hardware devices and

programming languages. Did it generate new ways of thinking they

hadn’t experienced before? The fuzzy process does not follow conventional

“accepted” methods of control and design, and so I wondered what it

meant in regards to its usability, its robustness, and its rigor.

During this stage, I also wondered how adults felt emotionally when

approached with the task of writing a computer program. Did Zuf help to

relieve this anxiety? Heather and Laura were chosen because they would

be impartial to the intent of the system. Neither of these women have

programmed a microcontroller before.

According to Sherry Turkle, in her article entitled “Seeing Through

Computers: Education in a Culture of Simulation,”

Ideas about computer literacy have changed, and it is no longer

clear what we need to know or should know in order to

become masters of our technology (Turkle, 1996).

Heather and Laura both use computers frequently, but their perceptions

of the computer does not include the complex algorithms, logic gates,

transistors, or binary machine code that enables the computers to run.

Heather and Laura use the machines without understanding how they

work underneath the surface. Concepts used in programming or hardware

design, such as iteration or the execution of algorithms, are foreign to

them, as they are to many adults.

80

The first of the women, Heather Casey, is a social worker in Boston. She has

a bachelors and a masters degrees in social work, and has worked for the

last two years at an early intervention program located in one of the poorer

neighborhoods of Boston. Her job consists of working with children who are

diagnosed with developmental delays and their families. When Heather has

the time, she enjoys engaging in projects like sewing and knitting. Computers

are not a prominent component in Heather’s daily activities, however she

owns a desktop computer which resides at home. She uses the computer

several times a week, primarily for checking email, shopping, and visiting

websites on the Internet. Heather used to use her computer frequently while

still in school, primarily to write papers and create reports for her classes

and research. At Heather’s agency she shares a computer with several other

colleagues. She usually does not have time to use the machine at work, unless

it involves obtaining paperwork or conducting research for a client in need of

housing, schooling, or other social services.

The second woman, Laura Davis, is a post-doctoral researcher at a medical

research facility in downtown Boston. Laura moved to Boston from England

just over a year ago. In the spring of 2002, she travelled back to England

to defend her dissertation and finish her doctorate. When asked if she

used computers and email to help exchange revisions of her work with her

committee overseas, she said no. Before she left England, her committee

members supplied her with an outline of what they expected of her work, and

this outline became her primary guideline while she worked independently.

As a biological researcher, Laura spends a lot of time at her lab growing and

working with cells. The lab is equipped with digital cameras designed for

use in conjunction with the microscopes and other high-precision instruments.

Laura recently bought herself a laptop so that she could complete many

of the tasks required of her research, such as writing papers, putting

together presentations, and analyzing data. Laura primarily uses her computer

for word processing, spreadsheets, checking email, and managing her

personal finances. In addition, she uses digital photography to record the

developmental stages of her cells, so Laura is familiar with paint and imaging

programs, like Adobe Photoshop and the ones included with the cameras.

81

Heather, Laura, and many adults learn to understand their computer

through exploration and interaction. Some adults enjoy reading manuals to

learn how to use a computer program. Others, like Laura, operate on a

need-only basis. Laura learns about the functionality of her machine only as

she stumbles upon new tasks she must accomplish with it. Despite using

a computer at work or at home, neither Laura nor Heather think about

their machine as a calculated and methodical robot. They do not visualize

its behavior in terms of data flow mapped by procedures, algorithms, and

variables. They are not exposed to the ordered structure, the synchronized

gates, or verbose chunks of code that lie within. It’s not that they are

incapable of knowing this, they just don’t have the need, or else they are

scared to discover it for themselves. Heather and Laura each repeatedly

told me, “I don’t know anything about computers” despite using them

frequently and owning personal machines.

Their comments brought to light an important perception that must

be considered when designing systems like Zuf. How are such systems

and methods capable of expanding a user’s bank of knowledge as well

as broadening their sense of power and understanding? When does

knowledge about the process of computation become necessary and useful

to the casual computer user? What would entice an adult to learn more

about technology or to want to build projects using programmable devices

and computational elements? It is not important for them to know how

their computers work in order to use them effectively. When would they

find it useful to understand computational concepts?

Each of these women had successful academic careers and slightly higher

than average mathematics educations. Heather does not use math or

science directly in her social work career, but she took college level

Calculus and considered herself a strong math student while getting her

undergraduate degree. Laura is a science researcher and uses math both

directly and indirectly in her work.

82

Heather took a computer class in 1988 at her middle

school in Florida, when she was in the eighth grade.

In the class, they were given the task of executing

rudimentary programs in what, we think, was the BASIC

language, although this is unclear. She remembers the

task as “making colored lines go across the screen” and

she had difficulty remembering any other details about

what they did. When asked about this experience, Heather

was uncertain if the class “counted” as programming

experience. She was hesitant to bring it up or describe it to

me in detail because it occurred so long ago and existed as

a vague memory in her mind. She remembered that it was

fun, but didn’t feel that it changed they way she thinks as

an adult or that the work was useful in her current life.

Aside from Heather’s middle school computer class,

neither of the women had experience programming either

software or hardware, nor did they use computers for

tasks outside email, commerce, and the others previously

listed. Laura’s new laptop is still missing a few programs

she’d like to use for her work. We started to discuss

what other software programs she wanted to have on the

computer, what she would use them for, and how she

would install the software on her machine. Laura said she

had a friend who could get the programs and install them

for her. Through her exasperated facial expressions, it was

apparent that installing software was an alien process to

Laura, one in which she is very hesitant to get involved

in. Laura told me that she thinks installations are probably

quite easy once someone knows what they’re doing.

She admits she could probably install software herself if

someone showed her how to do it. But she was also

adamant that she didn’t want or didn’t need to learn. The

task required a level of computer literacy that she was not

willing to reach. She had friends she trusted to do it for

her and do it correctly.

83

After working with Zuf, Heather and Laura were both surprised that they

had actually programmed on their own. Heather felt that the format was

more natural than what she understood programming environments to be

like, and so it became easier to comprehend what she was doing. She

thought that more people would be able to use it because of the ease.

She liked that it didn’t crash or take a lot of time to use. Once she worked

through some initial confusion, she really started to have fun and wanted to

add more components and behaviors to the device. Through the simulation

and the rules she established, Heather really started to understand how

the different components related to the rules she established. She became

interested in the types of sensors and inputs available for programmable

devices. She asked if there were temperature sensors, or whether it was

possible to determine how near other objects were. She thought it would

be fun to make stuff she could use with the kids at her job, so they could

understand cause and effect.

I’d like to make it so that when I talk really loud a car moves

around, and the kids would know if I’m angry or not,” she said.

“I think it would be really helpful to teach them about cause

and effect. They like lights and noises and it would be cool to

make stuff for them to play with and learn (Casey, 2002).

Zuf seemed to open a floodgate in Heather’s head and new, creative ideas

came bubbling forth. Now that she felt empowered and capable of using

a microcontroller to build real projects, she had new freedom to plan and

dream about what these projects might be. On the floor in Heather’s room,

I noticed that she had an array of holiday ornaments that she was sewing as

gifts for her colleagues at work. I prodded her to see if she’d be interested

in building computational stuff for her colleagues, and she laughed at the

idea of making squishy candy cane ornaments that blinked or played carols.

She said she would definitely be interested in learning how to use motors

and lights because she didn’t know how to use them.

84

Laura, on the other hand, seemed very hesitant to call what she had

done “programming,” even though she’d set up the inputs and outputs

and defined the rules herself. She played with the simulation briefly and

saw the relationship between input and output values as the system

processed the rules. She was not interested in looking at the output

graphs generated by the fuzzy logic calculations, and didn’t care to ask

questions about what they meant or how they related to her car. The

entire system didn’t fit with her model of programming as a complicated

and impossible task, and so she resisted calling it programming. She was

sure of her role as someone who “knows very little about programming”

and didn’t seem to have a desire to explore outside that box, or to admit

that she actually had.

Building computational objects seems to have little relation to the work

Laura does at her lab or home. Therefore she didn’t care to brainstorm

about other uses for the system outside the task I laid out for her.

It would be fun to let Laura play with programs like MicroWorlds or

StarLogo, programs with more relation to her work as a biologist. The

physicality of the work that Zuf lets users build does not illicit inspiration

or evoke new ideas about computation in Laura. My guess, however, is

that programs designed for simulating distributed systems and cellular

bodies would be received very differently.

One thing Laura appreciated was that the system was in a format that

she could access easily. She finds that her favorite websites are organized

clearly and contain links that work and follow through the site.

After discussing with Heather and Laura their experience with Zuf and

the things they learned from the program, it is clear that adults need to

see constructive, direct uses for computational systems in their careers

and daily activities in order for them to get excited about and interested

in using educational tools. Alan Kay has previously expressed these same

ideas about children,

85

What really seems to be the case is that children are willing

to go to any lengths to learn very difficult things and endure

almost an endless succession of “failures” in the process if they

have a sense that the activity is an integral part of their culture

(Kay, 1995).

The strength of Kay’s idea should not be limited to young kids. It resonates

throughout my work with Heather, Laura, and I imagine with other

adults. My work with Heather and Laura during the early development

stages of Zuf reaffirmed that it has the ability to empower designers

interested in building computational garments. It is specifically designed for

their work, and therefore it docks into their current interests, needs, and

initial skill level.

After spending time with Heather and Laura, I was curious about using

Zuf with adults who have high levels of programming experience and a

very fluid and deep understanding of computers, but who do not use

hardware or have an equivalent amount of experience working in hardware

as they do in software. Therefore I engaged in an informal discussion over

coffee with two graduate students who are working on thesis projects

that involve many hours of programming and computer time. Stan Port

and Jamie Wood studied computer science and electrical engineering as

undergraduates at the Massachusetts Institute of Technology. Stan

is currently working on his master’s degree at the MIT Media Laboratory,

and Jamie is working on her M.Eng. degree with professors at the

Whitehead institute.

Neither Stan nor Jamie feel comfortable using hardware, although they

have different opinions of hardware as a medium. Stan loves programming

in software because of the ease of implementation, the relatively free cost,

and the speed at which he can develop complex programs. He has forayed

into hardware on occasion, but found it extremely frustrating to pour over

catalogs, scratch his head about broken components, and repetitively build

the same circuit over and over. He had no idea how to go about starting a

hardware project without the help of his colleagues. He explained it to me

as an “indescribable phobia of hardware.”

86

Jamie, on the other hand, has a desire to use hardware because she finds

it aesthetically beautiful and much more powerful than the screen-based

programs she used to create in software. She likes the idea of being able

to work in a three-dimensional medium rather than building programs that

can so easily get ignored or lost. However Jamie hasn’t the faintest idea

where to start such a project. She explained that, if given a circuit diagram,

she can build it perfectly because she knows all the components and how to

put them together, but she wouldn’t have any notion of what the circuit did

on her own. “I can follow the directions if someone gives them to me, but

I want to be able to just put things together and know they’ll work. I want

big, tangible pieces that I can just play with.” Jamie expressed a need to

separate hardware from the personal computer altogether.

Speaking to these two helped clarify where the next stages of the Zuf

development needed to focus. Heather and Laura helped me recognize

that Zuf is fairly successful at making the software and programming

component of project development open and accessible to people with

no programming background. The fuzzy logic calculations successfully

implemented control code that allowed users to program using natural

language rather than procedural languages. It created an abstraction that

was high enough to be useful to beginners, and transparent enough to

encourage questions and curiosity about how things behave. Although

Zuf is not the best example of a tool that will excite all users, it is a

good tool for people like Heather to start thinking about and creating

computational projects. The next step is to create open and accessible

modules for designers to build hardware circuitry, to explore electrical

engineering concepts, and to feel like they can grasp how their projects

behave on many levels beneath the surface.

87

Using Zuf to Build a Garment

In order to test the Zuf system through an entire design cycle, I used it

to develop another garment, named Twirl. The idea behind Twirl was to

have a skirt with dynamic components that respond to the posture of the

person wearing the skirt. A resistive bend sensor was sewn into the back

seam vertically along the rear of the skirt in order to detect if the wearer

is standing, sitting, or partially bent over. Two five volt DC motors were

embedded into the lower regions of the skirt and control movement of

floppy, delicate adornments. The adornments can spin quickly, slowly, or not

at all, depending on the input from the sensor and on the fuzzy algorithm

currently running on the skirt’s microcontroller.

A pocket along the right quadricep houses

the Wildcat microcontroller and the interface

circuitry for the DC motors. The pocket Velcros

on three sides and holds the microcontroller

firmly in place. It also makes it easy to

access the device when new code needs to

be uploaded through the TCP/IP connection,

because the entire microcontroller does not

need to be removed. Instead, a small section

approximately one inch in length is a sufficient

opening to let the cable through. The input

sensor and output motors are connected to

the microcontroller through small wires that

are stitched through the skirt.

The Twirl project, which was built

using the Zuf system, 2003.

88

The development cycle for Twirl was very simple because of the Zuf system,

and the hardware implementation became secondary to the aesthetic

design and garment construction. Initially the skirt was designed in concept

through sketches and scenarios, and therefore the appropriate input and

output technology could be chosen for the skirt. The actual skirt was

built with the devices embedded into it without ever testing the hardware

circuitry or needing to write code. Because of the nature of the Zuf system,

I was confident that the hardware development would be smooth and

painless, and I proved myself correct. Without the Zuf system, development

would have required using the Dynamic C programming language and

environment, writing a procedural program that reads the input values,

calibrates and interprets them, checks for all cases dictating how the output

should respond, then sends the appropriate output value to the pin. The

process would have required learning the correct syntax, function calls, pin

declarations, and other specifics, plus multiple compile cycles before getting

to load and test the code on the hardware device.

Once the skirt had completed construction, I downloaded the bootloader

onto the Wildcat, then attached the inputs and outputs to it and placed

it in the pocket. At this point I was free to toy with many variations

of code linking the sensor readings to the output behavior. The Zuf

interface made this behavior easy to visualize and quick to modify. Writing

new code could be done without taking an excessive amount of time.

After several iterations of code, it quickly became clear what set of rules

were most effective for my

desires for the garment.

Tweaking the interaction

with the input sensors and

establishing the intended

behavior from the output

devices was accomplished

without any headache or

long iteration process.

A close view of a Twirl motorized

component, 2003.

89

Four steps for programming Twirl

using the Zuf system:

1. Declaring the inputs (top)

2. Declaring the outputs (second from top)

3. Establishing the rules (third from top)

4. Simulating the behavior (left)

90

In addition, the Zuf system became a good platform for working on

the project with other people because everyone could see clearly what

changes were made and how they were made, and could intelligently

discuss all the different design paths for the garment. The interface

really helped the ideas of the project come through, and made the code

intuitive for everyone to understand and think about.

There were a few weaknesses that I discovered during this development

process. First, the interfacing between hardware and the microcontroller

was a serious breakdown in the system. Motors cannot be directly

connected to a microcontroller because they draw too much current and

cause the microcontroller to fail. Therefore I had to take extra time to

develop interfacing hardware with a motor driver chip. The system needs

either “black box” modules that connect without extra circuitry or some

method for constructing hardware circuits.

In addition, having programmed entirely with procedural methods,

making the shift to fuzzy logic control proved to be difficult. The fuzzy

process Zuf uses is a much higher-level approach to programming, and

with that comes a sense of a loss of control and of the discrete

understanding of the code. It became a matter of how much I trusted my

program to work and how much impact I had on its performance.

91

Working with Design Students

The final analysis of the Zuf system came when I visited and worked with a class

of fashion design students at Parson’s School of Design in New York City. The class,

entitled “Fashionable Technology,” spans two semesters and was taught by Sabine

Seymore. The course website describes the class as investigating “the relationship

between wearable technology, fashion, and design. An interdisciplinary design

process is applied to guide the research, concept development, and prototyping.”

“Fashiontech,” as the class is referred to, explores both the theory and practicality

of developing computational garments, integrating technology into fashion design.

Each year the class focuses on a specific topic or context area. Snowboarding was

the theme of the class I came to work with. The students were developing jackets

for snowboarders to wear during their sport. The goal for the final jacket was

to integrate wireless communication, global positioning (GPS), and biosensing to

provide emergency location, slope information, and peer-to-peer communication

to the wearer of the jacket.

Design of the inner layer of

the fashiontech jacket. Document

courtesy of Sabine Seymour, 2003.

92

The average age for the class was 28 years old, and all of them had

undergraduate degrees from accredited institutions. Half the class had

received bachelors of fine arts, and the other half had already received

master’s degrees in topics ranging from business to arts.

During the fall semester, I visited the Fashiontech class to give a lecture

about embedded computing in the context of garment design. This visit

was the first stage of my evaluation and research, and it served as a means

for me to talk with the students and get a feel for the skills they did and

did not have. Through classroom discussion and observation following my

lecture, I gathered the following information about a typical fashion design

student.

1. Everyone knew how to use a computer for checking email,

surfing the web, and using word processing programs.

2. Some of the students had created visual design projects

on the computer using applications like Adobe Photoshop or

Macromedia’s Flash.

3. Many of the students had never done any sort of computer

programming or computational design projects. Of those who

had, most had written short action scripts or HTML code, but

not worked with hardware.

4. All students were extremely conceptual and visual in nature.

The students who had worked with Flash or written HTML code and Action

scripts seemed to have a higher level of comfort and confidence when

confronted with the idea of using microcontrollers and building circuitry. It

was good to meet with and talk to all the students during this visit because

I was able to gauge their experience level and interest in computational

projects. I was able to use this understanding as I set out to design the

Zuf system and interface.

93

During the spring semester, I revisited the Fashionable Technology class in

order to assist them with the construction of their jacket, and to provide a

hands-on workshop using my software to evaluate its usability and intent.

The class had shrunk in size because conflicting schedules forced some of

the students to drop the course, however the students that remained were

very enthusiastic and excited about the class, and about my visit.

The collection of jackets they’d conceptualized the semester before had

been whittled down to one concrete design, and the class was currently

in the process of building presentations, specifications, and detailed

documentation of the design and the technology they hoped to incorporate

into the jacket. It was interesting to see the process by which they

came upon their design. They have a fresh outlook on technology, its

implementations, and its applications. They attack their projects with a very

top-down approach, as opposed to myself and most of the students I work

with at MIT, who attack their projects from the bottom up.

Design of the outer layer of

the fashiontech jacket. Document

courtesy of Sabine Seymour, 2003.

94

Many engineering students often have very technically strong projects

but the concepts are unclear or the final form of the work is poorly

designed and constructed. The students at Parson’s, in contrast, have

very strong conceptual work. The ideas and intentions are extremely

clear and illustrated well, the design of the forms are immaculate, but

the implementation is a nearly impossible task, too daunting to even

know where to start.

In contrast, my usual process when building a computational garment

is to find interesting technology and build the garment around it,

whereas the students at Parson’s would design a garment and concept,

then force technology to fit into the design. For these designers, their

approach makes sense because they come from a point of view in

which they are unaware of the constraints technology can impose on a

design. They operate under the assumption that whatever they choose

to use will magically be able to work somehow.

Unfortunately, many of the ideas they generated for the class were

one of two extremes, either so fanciful that they weren’t grounded

in reality in regards to existing technology, or they exactly mimicked

currently existing garments that incorporate PDA’s, cellphones, and

other portable devices, instead of challenging the ways in which the

aesthetic and physical properties of garments can actually be altered

by technology.

The class was very good about accounting for such problems as

placement on the body, protection against weather and elements, and

other physical issues. Their technical weakness was apparent, however,

because they did not design any of the interfacing circuitry that would

“glue” their components together and allow for the jacket to function

as one system. After they presented their designs to me, one student

looked up with inquiring eyes and very innocently asked, “Can this all

work? Is this jacket possible?”

95

The jacket they were designing was unfortunately not far

enough along for us to do the hands-on workshop using

my software, so I modified the evaluation to consist of

a presentation of the work, an optional questionnaire,

and a group discussion. During the presentation, I gave

a working demo of the Zuf system, explained where I

wanted to take it in the future. The questionnaire helped

them provide concrete feedback and insight on the work.

We also engaged in a meaningful discussion of the Zuf

system and their challenge as designers in general.

The strongest observation I perceived from the class was

that (understandably) their designs were directly influenced

by their current skill set and the depth of their knowledge

of technology. The did not know where to research,

browse, or search for new technologies or new devices

and components they’d never heard of before. Therefore

the designs had a tendency to repeat traits from the

designs of industry and currently marketed products. This

seemed to be largely different from other work that I

observed around the building. The student projects and

design pieces that were displayed in the hallways and

exhibition spaces at Parson’s were extremely cutting-edge

and creative, pushing the envelope in design, illustration,

and fashion. Was it the amount of theory they’d been

taught that helped them break through in other domains?

Was it the larger collection of existing work from which to

draw inspiration that gave them more room to be unique

and innovative, as opposed to the extremely small set of

existing work in computational garment design? I became

extremely curious about where and why this deviation

occurred in the Fashionable Technology class.

96

Because of the strong contrast between their vantage point on project development versus

myself and other MIT students, I was able to get very refreshing and supportive feedback

on the Zuf program. The students were genuinely interested in seeing the program and

understanding how it works and should be used. My feeling is that this was because it

was the first time someone turned to them and said “I understand your challenge and

frustrations, I want to help you, and I want to make this work for you.” The students have

little to no experience working with electronics on such a low level, and they do not have the

perspective or support of other students to help them get their footing.

The students explained that it would be helpful for a list of all existing input and output

devices to be displayed on the interface or appear in a drop down menus on the pages

where the parameters are named. My assumption was that users would want the freedom to

write in or add their own naming conventions and devices, and so I left the text fields open

and ambiguous. My mistake was that I assumed users would either know what technology

exists that they can use, or else they would know where to research and find such items. The

reality however is that neither of those assumptions are true and the users are most likely

clueless about such things or else not confident enough in their knowledge.

A map of the interface

design and interaction with

the fashiontech jacket.

Document courtesy of Sabine

Seymour, 2003.

97

They really resonated with the second mode of the

simulation. Being able to visualize the behavior was very

meaningful and especially because it was so directly

correlated with the fashion projects. They suggested that

it would be nice for the users to be able to design and

illustrate their own visualizations for each output so that

the connections could be made that much stronger and

more literal. This suggestion seemed especially nice to

me because it got the designers more engaged in the

work through a visual medium they understand. It got

them thinking about each device, how it would behave,

how to isolate its functionality in a design and how it

should be placed on the body, then how all these things

relate back to the code they’re building and behavior

they’re specifying.

Some of the students had worked on projects for either

work or school where they held the position of designer

and worked with a team of engineers or technologists.

They described these projects as often being frustrating

or challenging because it was difficult to communicate

their ideas to the engineers, and vice versa. The hardest

part was making it very clear to the engineers what type

of behavior and functionality they envisioned.

After seeing the Zuf interface, they were very excited

because it had an obvious application to their work that

I had not envisioned. A program like Zuf would be an

ideal tool for them to use to communicate between

designer and engineer. Zuf became, in their eyes, an

interface between designer and technology - one that

both sides could use and understand. The idea of using

Zuf to clarify or express an idea, to present work, or to

actually build a project was equally important to their

work and their needs.

98

At first I was surprised to hear this because it had not crossed my mind as

a useful application for the Zuf software. This use for Zuf clearly addresses

a very basic communication problem that exists between designers and

engineers. The software could act as a conduit between designer and

engineer and still accomplish the task of being a tool that empowers

designers, develops powerful ideas, and aids with their computational

literacy. Even if a designer wasn’t going to build the technology for

their work, playing with a program like Zuf still enabled them to work

computationally and think about the kind of behavior and functionality their

work would possess.

In this sense, Zuf helps designers ground their work in reality and think

strategically about the technology they want to use, how it relates to the

garment, how it operates, and what it entails to use it. Their designs thus

become stronger and more elegant, simpler and more clear. Instead of

designing super-garments that can do anything and everything in concept

but are technically impossible, they can now design unique, functional, and

realistic garments that make it through the development process intact,

retaining the true nature and goals of the work. Perhaps it would eventually

excite them enough to want to dive in a little deeper and see if they can

build the garments themselves.

99

Technical barriers inhibit designers interested in

building computational garments. In order for fashion

designers to construct systems of clothing that react,

collect information, or enrich our interactions with

places and people, they will need a tool that helps

them realize powerful computational concepts. The

tool must lower the threshold and engage designers in

meaningful ways during the design process.

This research focused on the development of a

powerful tool named Zuf, which was constructed for

fashion designers interested in building computational

garments. The Zuf system uses fuzzy logic reasoning

to control embeddable devices. It contains a

programming and simulation environment for

designing and testing the devices, and utilizes the

familiarity of websites as the programming interface.

Its goal is to uproot the process of programming

embeddable devices and turn it into a procedure that

designers can use confidently and creatively.

Chapter Six

Conclusion

102

Prior to building Zuf, I created many projects

in computational design that helped outline

some of the major features and design choices

implemented in the Zuf system. These projects

included several garments, a handbag, and a

hardware programming system. The garments

are situated within the axes of computational

garment design; Dynamic / Static; Reactive /

Disregarding; Disposable / Permanent; Mutating

/ Preserving; Communicative / Withdrawn;

Informative / Mysterious; Humorous / Solemn.

Each garment was built to illustrate the different

axes but also turned out to contribute a great

deal towards the development of the Zuf system.

Building the garments illustrated how Zuf would

be used to create computational garments; what

electrical components and control algorithms

were needed to create the different behaviors, and

what materials and embedded systems worked most

effectively to make each axis clear. As a result, Zuf

became a powerful tool that enables designers to

elegantly develop projects which fall along any of

the design axes by providing a solid foundation for

embedded system control.

Dynamic

Static

Reactive

Disregarding

Informative

Mysterious

Mutating

Permanent

103

When designers use the Zuf system, they write code by establishing

simple, natural language rules instead of relying on procedural languages

or complex algorithms. The rules are translated into fuzzy algorithms

which run on the devices. The website and programming methodology lets

designers hand-craft the hardware components of their garment designs.

Zuf is a potential stepping stone for those interested in exploring more

advanced projects.

The Zuf system was tested on two adults who have no programming

experience. Then it was used to develop a computational garment. Finally it

was shown to a class of fashion design students at a school in New York,

where an in depth discussion was held regarding the Zuf system and the

needs of designers interested in a new and unfamiliar field.

There are still many features in the Zuf system that should be refined

and improved upon, however it is successful as a conceptual model

and starting point. In addition to its application as a tool for building

computational garments, Zuf has powerful uses as a tool for other domains.

It provides a unique approach to controlling embedded devices through

fuzzy logic reasoning and its web-based platform. Any application that

requires hardware control, particularly those where an inexperienced adult

will be working on the design, might find Zuf empowering and inspiring. No

matter what type of project provides the context for using a tool like Zuf,

the system can act as a stepping stone for the designer and evoke a deeper

understanding and interest in hardware control.

Research in the field of wearable computing has moved technology

and industry towards building lighter, more flexible, and more powerful

computational devices that can be carried or worn on the body. As a result,

fashion designers have started to think about embedding technology such

as MP3 players and cellphones into clothing. Little work, however, has been

done to change the nature of garment design by utilizing technology as

an expressive medium.

104

Computational garments have the potential to become key

actors in our lives. On one hand, the garments have infinite

possibilities as expressive fashion elements. The kinetic,

dynamic properties of computational garments means they

are capable of exhibiting components of our identity in

new and interesting ways. Clothing no longer has to be

static or unresponsive. Rather, it should have the ability

to transform itself, repair itself, mutate, adapt, and react.

Instead of resting on our bodies like an external layer of

dead skin, clothes can come alive.

Computational garments have a huge potential in

the fields of medicine, military, rescue operations,

business, education, performance, athletics and more.

Computational garments have the computing power to

collect, store, and share information. The human body acts

as a mobile, dynamic canvas upon which to display and

process this information. The visibility and interactivity of

the human form makes it a unique interface - perfect for

many industries, jobs, and applications.

Research needs to move out of the academic labs and into

industry in order for computational garments to fall into

the hands of the general public. Therefore a lot of work

must be done to establish the framework and standards

for building the garments in order to empower designers.

Zuf is a first step in this direction. By building Zuf, I hope

to encourage people on both sides of the story to think

seriously about how to enrich the field of computational

garment design so it can blossom and mature.

105

Aesthetics + Computation Group. Design By Numbers

website. MIT Media Laboratory. Cambridge, MA. 2003.

http://dbn.media.mit.edu/.

Aesthetics + Computation Group. Nylon website. MIT

Media Laboratory. Cambridge, MA. 2003.

http://nylon.media.mit.edu/.

Bernier, Beatrice. “Fashion, City, People.” Master’s thesis.

Massachusetts Institute of Technology, 1985.

Buckley, J., Eslami, E. An Introduction to Fuzzy Logic and

Fuzzy Sets. Heidelberg. Physica-Verlag. New York. 2002.

Cakmakci, O., Koyuncu, M., Eber-Koyuncu, M., Duriau,

E., Matthewson, A., Donnely, J., O’Neill, B., Healy, T.,

Clemens, F. “Fiber Computing: Towards More Wearable

Computing.” 2001.

Carnegie Mellon University Wearable Group. Website.

2003. http://www.wearablegroup.org/.

Casio Computer Company, Ltd. “High Performance Fuel

Cells for Programmable Devices.” 14 March 2002.

http://www.casio.com/.

Bibliography

108

Cheok, K. C., Kobayashi, K., Scaccia, S., Scaccia, G. “A Fuzzy Logic-Based

Smart Automatic Windshield Wiper.” IEEE Control Systems Magazine.

Volume 16. Issue 6. December 1996.

Chiu, Stephen. “Using Fuzzy Logic in Control Applications: Beyond Fuzzy

PID Control.“ IEEE Control Systems Magazine. Volume 18. Issue 5.

October, 1998.

Co, Elise. “Computation and Technology as Expressive Elements in

Fashion.” Masters Thesis. Massachusetts Institute of Technology. Media Arts

and Sciences. 2000.

Co, Elise. Aesthetics + Computation website. MIT Media Laboratory. 2003.

http://acg.media.mit.edu/people/elise/

Cyberdog. Company website. 2003. http://www.cyberdog.net/

diSessa, Andrea A. Changing Minds: Computers, Learning, and Literacy. MIT

Press. 2000.

ElekSen. Company website. 11 March 2003. http://www.elektex.com.

Green, Adam. “Shooting Star.” Vogue Magazine. May 2003.

Kay, Alan. “Powerful Ideas Need Love Too!” Written remarks to U.S.

Congressional Committees. October 1995.

Maeda, John. Design By Numbers. MIT Press, Cambridge, MA. 1999.

Maeda, J., Sakai, Y., Sawada, Y., Komuro, R., “Fuzzy Rules As a

Programming Medium for Children.” Proceedings of 2nd International

Conference on Fuzzy Logic and Neural Networks. pp. 709 - 715.

Mann, Steve. “Definition of a Wearable Computer.” Wearable Computing

website. University of Toronto. May 12, 1998. http://about.eyetap.org/.

109

MIT Wearables. Research group website. Massachusetts Institute of

Technology. 2003. http://www.media.mit.edu/wearables/index.html

Motorola inc. “Motorola and Bloomingdale’s Offer a Rare Gem of a Phone.”

Motorola company website. 2001. http://www.motorola.com/mediacenter/

news/detail/0,1958,1409_1074_23,00.html

Orth, Maggie, Berzowska, Joey. International Fashion Machines. Company

website. 2003. http://www.ifmachines.com/

Orth, M., Post, R., and Cooper, E. Fabric Computing Interfaces (short paper).

Proceedings of Conference on Human Factors in Computing Systems. Los

Angeles, CA. ACM Press. 1998.

Papert, Seymour. Mindstorms: Children, Computers, and Powerful Ideas.

Basic Books. 1980.

Paradiso, Joseph, Hu, Eric, Hsiao, Kai-yuh. “The CyberShoe: A Wireless

Multisensor Interface for a Dancer’s Feet.” Proc. of International Dance and

Technology 99. Tempe AZ. Feb. 26-28, 1999.

PCWorld. “Wearable PCs Offer Function, Not Fashion.” IDG.net. December

23, 1999. http://www.idg.net/go.cgi?id=309556.

Piaget, Jean. To Understand is to Invent: The Future of Education. Viking

Press. October, 1974.

Post, E. R., Orth, M., Russo, R. R., Gershenfeld, N. “E-broidery: Design and

fabrication of textile-based computing.” IBM Systems Journal. Volume 39,

Nos. 3 and 4. 2000.

Post, E. R., Orth, M. “Smart Fabric or Washable Computing.” IEEE

International Symposium on Wearable Computers. 1997.

Reas, Casey, Fry, Benjamin. Proce55ing website. MIT Media Laboratory and

IVREA. 2003. http://www.proce55ing.net/.

110

Reima Smart Clothing. Company website. 2003.

http://www.reimasmart.com/.

Resnick, M. “Closing the Fluency Gap.” Communications of the ACM, vol.

44, no. 3. March 2001.

Resnick, M., Berg, R., and Eisenberg, M. “Beyond Black Boxes: Bringing

Transparency and Aesthetics Back to Scientific Investigation.” Journal of the

Learning Sciences, vol. 9, no. 1, pp. 7-30. 2000.

Rosenschein, Stanley. “Artificial Agent Architecture.” MITECS: The MIT

Encyclopedia of the Cognitive Sciences.

http://cognet.mit.edu/MITECS/Entry/rosenschein.

Royal Philips Electronics. “Philips and Nike join forces to bring technology to

sport and create a new market.” Press Information. 25 March 2002.

http://www.philips.com/InformationCenter/Global/

FPressRelease.asp?lArticleId=2002&lNodeId=13

Rhodes, Bradley. “A Brief History of Wearable Computing.” MIT Wearable

Computing Project. 1997.

http://www.media.mit.edu/wearables/lizzy/timeline.html.

Sadoway, D. R., Trapa, P. E., Huang, B., Ryu, S., and Mayes, A. M. “Block

Copolymer Electrolytes for High-performance, Solid-state Lithium Batteries.”

Presented at the 11th International Meeting on Lithium Batteries, Monterey,

June, 2002.

Sanders, Bob. “Cheap, plastic solar cells may be on the horizon, thanks

to new technology developed by UC Berkeley, LBNL chemists.” UC Berkely,

Media Relations. 28 March 2002.

Seymour, Sabine. Parson’s School of Design, Center for New Design,

Fashionable Technology website. http://a.parsons.edu/~fashiontech/.

111

Shenck, N., Paradiso, J., “Energy Scavenging with Shoe-Mounted

Piezoelectrics,” IEEE Micro. Volume 21. No. 3. May-June 2001.

Sony Corporation. Company website. 2003. http://www.sony.com/.

Stanford University website. 2003. http://wearables.stanford.edu/.

Starner, T., Mann, S., Rhodes, B. Levine, J., Healy, J., Kirsch, D., Picard, R. W.,

Pentland, A. “Augmented Reality Through Wearable Computing.” Presence

vol. 6(4). 1997.

ETH, Swiss Federal Institute of Technology. School website. Wearable

Computing Laboratory. Zurich, 2003. http://www.wearable.ethz.ch/.

Turkle, Sherry. Life on the screen: Identity in the Age of the Internet. Simon

and Schuster Press. New York. 1995.

Turkle, Sherry. “Seeing Through Computers: Education in a Culture of

Simulation.” The American Prospect. 1996.

University of Oregon website. Computer and Information Science, Wearable

Computing Laboratory. 2003.

http://www.cs.uoregon.edu/research/wearables/.

VoltaFlex. Company website. 2003. http://voltaflex.com/.

Waters, Peter. “Clothes that know when you’ve been sleeping…” Textile

News Online. 1 March 2002.

http://www.tft.csiro.au/textile_news/2002_1q/knowing_cloths.html.

Wearable Computing. Group website. “Introduction to Wearable

Computing.” University of Toronto, 2003.

http://about.eyetap.org/library/weekly/aa061500a.shtml.

Zadeh, Lotfi. Personal webpage. University of California, Berkely. 2003.

http://www.cs.berkeley.edu/~zadeh/.

112

I’d like to thank the following people for the encouragement,

inspiration, and assistance they so kindly gave me during my time

as a graduate student at MIT.

My Adivsor

Prof. John Maeda, whose wisdom and insight propelled me like a rocket

through this research, leaving me no time to doubt - just time to design,

build, and absolutely love to work.

My Readers

Joe Paradiso and Mitch Resnick, two of the greatest minds at MIT.

The Aesthetics + Computation Group

Simon and Justin, my never-ending source of competition, comraderie,

and compassion. Ben and Tom and their indispensible, awe-inspiring

knowledge and guidance. James and Nik, for keeping watch at night.

Elise, my resource for great research, food, and shoes. Casey and Cait,

so thoughful, helpful, and beautiful. Jared and Golan, for nurturing me

as a wee undergrad. Axel, Omar, and Afsheen, each so crazy and yet so

amazing. Max and JRoth, because I don’t know who has a bigger smile.

And Allen, Mimi, Patrick, Max, Saggy, and the other UROPS, who gave

me something to adore (their work) and fear (Cher).

Other Media Labbers

All the students I couldn’t have done it without - Parul, Michael, Michelle,

Ryan, Jeanna, Erik, and the rest. Plus Elizabeth, Missy, and Connie, Csik,

Prof. Smith, and John DiFrancesco. And the TTT, I:O, and DL consortia

whose funding made this possible.

Acknowledgements

114

115

Acknowledgements, continued.

My Family

My parents, a bottomless well of inspiration and love. My brother, Colin,

for staying right on my heels, keeping me one step ahead of the game.

My sister, Allison, an awesome chef, the perfect friend, and who always

grounds me when I get lost in the ivory tower. My sister, Laurel, the best

nurse in the world, and to whom I am forever indebted for taking care of

our mom. And all the others in Naples and Colorado because I have the

best family in the entire world.

My Girls

Ali Wood, for the long emails and shared mouse clicks. Nicky Stafford,

for the ice cream, the phone calls, and plenty of laughs. Carla “The

coolest math teacher in New York” Pellicano for letting me visit without

any notice. Cat Foooooo, an awesome roommate who loved to share her

mom’s great food. Ali Snyder, Karen Davis, plus Shawdee Eshgi and the

rest of my bike gang - biker chicks and skirts forever.

My Boys

Ian Ingram, who blamed me for his masters thesis, likes to accuse me of

stealing his ideas, and somehow manages to be one of my best friends

in the world. Captain Lieutenant Admiral Ensign Andrew Sause Money,

who washed in and out with the tides but reminded me why life is so

damn fun. Dan Chak, for being The Dan and nothing less. Jeff Ma, for

the yummy lunches, odd projects, and great talks. Jim Anderson, Stefan

Bewley, and the Pirates. Ben Fry, who will always hold a place in my heart.

And of course Dr. Brian Bingham, for being the best friend I didn’t know I

needed, and for giving me love I tried hard not to need.

My Athletes

The MIT Women’s Crew Team, in particular Susan, Andrea, Hillary, Rich,

Lean&Mean, and all the awesome ladies I got to coach this year. The MIT

Cycling Club; Stan, Caitlin, Chip, Jason, Janine, Ariel, the balcony, and

all the other great riders. The Korbly’s, and the Triathletes, who taught

me that when you really want something, there is nothing better than

swimming, biking, and running as hard as you possibly can after it.

