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In an age where identity is increasingly fluid and multifaceted, the static 

clothing and unresponsive materials we wear are often an insufficient 

means of expression. Clothing designers want to create systems of clothing 

that react, collect information, and enrich our interactions with spaces and 

people; however, technical barriers inhibit designers interested in building 

computational garments. Designers need a tool that is attainable and usable 

in order to successfully work in the field of computational garment design. 

This thesis introduces a powerful, intuitive tool named Zuf which provides 

a new approach to control embedded devices using fuzzy logic. Zuf is 

a prototyping and simulation environment for programming and testing 

embedded devices. Users write code by establishing simple, natural 

language rules. The rules are translated into fuzzy algorithms which run 

on the devices. Zuf enables fashion designers to think abstractly about 

computation as a medium.
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Chapter One

Introduction

Clothing has been used to transform the body and alter 

our understandings of self and the human form for years. 

Much like corsets and bustles work as underlying systems 

to mold, shape, and support our body and clothes, we 

can use new technologies, materials, fabrication processes, 

and computational systems to adapt to, respond to, 

monitor, and alter our bodies and clothing. Through these 

systems we can create rich new experiences and modes 

of expression.

Technology as a medium for design enables new 

instantiations of style and personal identity. Applications 

for technology that relate to the physical human form are 

rapidly developing as lighter and more robust components 

get introduced to the market. Despite the growing interest 

in technology as a means for expression - particularly in the 

area of fashion design - no discussion or vocabulary exists 

about how technology changes our definition of fashion or 

transformations of the body. 

Computers, like finger paint and beads, should be 

used as a “material” for making things...

Mitchel Resnick, Closing the Fluency Gap, 2001
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Work developed in the area of wearable computing focuses 

on the technical capabilities of garments instead of the 

aesthetics. It is not simply a matter of sewing MP3 players 

and cellphones into our jackets. Nor is it simply about being 

able to wear personal computers rather than carrying them 

in cases. 

Introducing concepts of aesthetics, kinetic sculpture, and 

visual design into the field of wearable computing changes 

the nature and the goals of the work. The focus shifts 

from the technology to the garment, from functionality to 

context. This shift marks the foundation of a new area of 

research called computational garment design. Computational 

garments are garments that contain embedded technologies 

designed to enhance clothing and make it reactive or dynamic. 

Computational elements can breathe a sense of life into 

previously inanimate objects, redefining how we relate to, 

wear, and think about our clothes.

The field of computational garment design is starting to 

take root amongst technical fields of research, but fashion 

designers are unable to use computation in their designs 

because technical barriers are generally too high, too 

impermeable, or too intimidating. Developing new approaches 

to control and use embedded devices enables fashion 

designers to think abstractly about using computation as a 

technical medium for their designs without getting thrown 

off by the burden of implementation. In order to encourage 

fashion designers to think about and use embedded devices 

in their work, this thesis focuses on the development of a 

new environment designed using a web-based, fuzzy logic 

programming model, shifting away from traditional device 

control practices.
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The chapter in this thesis entitled “Background” is designed to give 

an overview of the different areas of research pertinent to this work. 

These areas include Wearable Computing, Computational Garment Design, 

Embedded Systems, Fuzzy Logic, and Computational Literacy. The chapter 

contains a discussion of each area and provides samples of work and 

references to related papers or writings. It is intended as a resource for 

others interested in this vein of research.

The next chapter, entitled “Preliminary Work,” contains additional 

motivation for this research which stems from a collection of computational 

garments that I constructed during the period between September 2001 

and March 2002. Each of the garments brought to light many of 

the challenges, needs, and frustrations that designers might encounter 

during the development process of a computational garment. Elroy, Iris, 

Peppermint and the others were indispensable projects for testing and 

exploration. They carved out the functionality and needs of a development 

tool aimed for designers. Each garment brought to light at least one 

important element implemented in the Zuf software. Their contributions are 

highlighted in the third chapter.

The fourth chapter, entitled “Zuf: A 

Fuzzy Control System,” gives a detailed 

description of the fuzzy programming tool 

including the interface design, software and 

hardware design, and interaction design. 

The fifth chapter, “Analysis & Applications,” 

provides an in-depth analysis of the system, 

including people’s experiences using the 

system, its ability to empower designers, 

and its weaknesses. The thesis concludes 

in the final chapter, “Conclusion,” which 

reiterates this area of research and its 

approach, then discusses where the field is 

going in the future.

An illuminating skirt created by 

designer Erina Kashihara.
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Empowering Designers

For adults, computer programs exist that provide control capabilities for 

hardware and development spaces for software, but these programs are 

typically not for novice users. An inexperienced adult interested in building 

a project with a microcontroller has a variety of options to chose from, 

but the truth is that most programs are ineffective tools for learning 

the underlying concepts. The programs are difficult to set up, difficult to 

understand, and extremely intimidating. Some provide high level languages 

to use to control the devices, but the languages still require a basic fluency 

in writing procedural programs. Others require a deep understanding of 

the circuity in order to write programs. Users must rely on dense maps 

and complicated circuit diagrams that show the connections between pins, 

buses, and other elements in order to write working code.

Meanwhile, educational tools developed for the computer might help 

designers use computation in their work; however, they are primarily 

designed for children. Bright colors, cartoon-like characters, animals, 

associations with toys, silly sounds, and graphical elements construct the 

interface for a myriad of programs designed as exploratory spaces. Through 

these programs, children can learn about and understand the complex 

world of computation. These programs are powerful because they provide 

a stepping stone for children to explore tasks in relation to computation, 

mathematics, science, identity, and, in some cases, social responsibility. But 

these same programs fall short for adults who want to use computation 

for their professional work.

Adults with weak mathematics or science backgrounds think very differently 

about computers and computation than adults who come from stronger 

technical backgrounds. This is not to say that “non-technical” adults 
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will not (or do not) find computers useful in their daily life, work, or 

hobbies. In general, people are becoming more adept at using computer 

programs or familiarizing themselves with operating systems and simulation 

environments. Many adults use computers to accomplish tasks such as word 

processing, email, or commerce. The catch is that these adults operate 

in abstraction levels far removed from the internal structure, design, and 

operation of the computer as a machine. 

Hobbyists and computer enthusiasts have a conceptual model of the 

computer as a machine and therefore a desire to mess around with its 

functionality. My father is one of these enthusiasts, and in his spare time 

he likes to add internal devices, reinstall operating systems, or fuss with 

his scanner and digital camera. His approach is methodical and calculated. 

Unlike engineers or experienced hackers, however, he is fearful of damaging 

the computer, so he reads the manual and instruction booklets with fervor. 

His progress is slow, precise, and safe. Adults like my father have the 

confidence to open up machines and toy with their controlling mechanisms, 

but they often have no space in which to do so with complete freedom 

or lack of fear. We need an educational tool that helps my father, fashion 

designers, and other adults delve into complex ideas about computation 

and programming. Yet no appropriate tool exists.

Development tools designed for embedded devices assume a complex 

understanding of computation and are no place for beginning users to 

explore and build computational projects. Some commercially-available, 

high-level packages include the BasicStamp, MiniJava, I-Cube, and others. 

The BasicStamp, for instance, is a development platform geared towards 

beginners which couples a software development tool with microcontroller. 

Its reliance on a form of the BASIC language, however, creates a confusing 

and difficult barrier for adults who have no programming experience. Since 

most development platforms are not geared toward beginners, they are 

dramatically complex and difficult to use.
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Educational tools, on the other hand, are generally available to people 

of any age, but adults are less likely to use the programs because of 

age-related taste differences or irrelevance to their occupation. No clear 

connection exists between the output of these programs and the tasks 

adults need to accomplish in their career. There is little motivation for 

adults to conceptualize useful projects to build with computational devices 

because the appropriate tools do not exist for use by anyone without an 

engineering degree. Computationally educational programs are associated 

with children’s toys. “Real work” can’t be accomplished with a child’s 

video game, play calculator, or educational computer program. A designer, 

for instance, would not feel comfortable showing a prototype garment 

controlled by LEGO parts to their client when they are expected to build and 

design professional work. 

How, then, are adults supposed to learn about and use embedded devices 

if there is no useful resource available to them? It’s infeasible to expect 

them to learn everything in a college classroom. Without a colleague or 

peer familiar with the work to guide them, the task is daunting enough to 

be avoided altogether.

Building Blocks

For this thesis, I developed a system called Zuf for fashion designers 

and non-technical adults interested in building computational garments 

or programming embeddable devices but do not have the technical skill, 

background, or intuition to delve into such projects alone. After building 

computational garments for over a year, I realized there should be a better 

method for developing these garments. Each time I set out to build a new 

garment, I had to reimplement the same or similar programs and circuits 

that either I or other researchers had built many times before. I felt like I 

was reinventing the wheel. 
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I spoke to many students and designers interested in building these 

types of garments. Across the board, they were all highly capable of 

developing strong concepts for computational fashions, and were highly 

capable of designing non-functioning prototypes of their ideas. However, 

they were rarely able to bring these ideas into reality and make actual, 

functioning garments.

At the time, my colleagues and I were in the process of developing 

Nylon, a computational system for programming and simulating 

microcontrollers. Through this work, I realized the benefit of having a 

highly integrated, aesthetically oriented system for novices and designers 

to use for experimentation and development. It seemed obvious that 

such a system was needed for fashion designers and other adults 

interested in building computational garments, especially for those who 

do not have the benefit of being able to study technology in school or 

work around highly skilled, technical people. It needed to be a system 

that was powerful and elegant to use, as well as easy to pick up. 

The system needed to let people teach themselves how to use and 

build computational projects without the headaches that are so common 

during traditional hardware development.

Two things seemed particularly important as I ventured into this work. 

First, the system needed to have a viable amount of abstraction away 

from the hardware specifics. Second, there needed to be a strategic step 

away from traditional programming methodologies. The people who I 

imagined would be interested in this system wouldn’t care at first about 

the underlying architecture of the devices, sensors or hardware they want 

to use. For the purposes of their work, there is no need for them to. 

Therefore, if the field of computational garment design is to really open 

up and blossom as a new approach to designing, building, and thinking 

about clothing, then such walls must be torn down. 
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It is not entirely pertinent for a fashion designer to be an expert 

programmer or hardware engineer in order to create beautiful or evocative 

designs for their computational garments. It is pertinent, however, for 

designers to use computational materials comfortably and with some 

amount of control in order for the designs to move off the sketch pads and 

into the physical world. The Zuf system developed for this research does not 

require a perfect understanding of electrical engineering or programming 

in order to be useful and effective, nor does it take away complete control 

of the device from the user. The system is instead designed as a gateway 

between two worlds, allowing room for experimentation and exploration 

before requiring a hard leap into the technological unknown.

A Fresh Outlook

Generally the approach for programming small devices begins with 

mastering specific applications which require complex initialization 

procedures to access the devices. Situating the Zuf environment within 

a website makes the process more familiar for designers. The explosion 

of Internet use over the last decade has resulted in general familiarity 

with website visitation, email checking, online shopping, etc. The web is a 

medium used for many purposes by people from varieties of backgrounds 

and education levels. A successful website developer designs for the user-

experience of a site because it is critical for their client’s business to ensure 

that users can utilize the software to its full capabilities and intentions. 

Thus the web becomes a powerful tool for reaching people who are wary 

of technology but have found comfortable spaces to occupy online. It is 

precisely for this reason that Zuf utilizes the web as a space for hardware 

development, and demands the same attention to user interface design as 

a high traffic website.
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There is an intellectual opportunity in this domain of work. Computational 

garments will emerge as key actors in our lives once they are accessible, 

inexpensive, and well-designed. They offer the ability to provide new 

dimensions for interaction, performance, and social cues, not to mention 

they will enhance the aesthetics of clothing. Currently, the outfit or 

uniform we choose to wear each morning generally remains on our bodies 

throughout the day, and yet each evening the garment knows nothing 

more about our lifestyle, friends, or work environment than it did when it 

was donned. Computational garments can provide elegant and unobtrusive 

ways to gather, store, and access information. Medical and rescue industries 

might employ particular concepts and technologies to improve missions 

and increase performance, while athletics and sporting industries might use 

them to monitor and enhance the performance of athletes and teams. 

Computational garments can provide new ways to interact with people 

and spaces, and provide cues about identity, belief systems, sexuality, or 

economics. Such results should bring forth notable social behaviors or 

expressions of self, or evoke new types of relationships.

Initial technological developments required to develop computational 

garments are already in place, but there is a large amount of work yet to be 

done. Appropriate technologies, education, vocabulary, and a community 

must be established. Collaboration between many industries is critical to the 

success of new fashion design. Wearable computing researchers have made 

considerable headway in the development of electronic components that 

are small, lightweight, robust, or flexible. The fashion industry, however, 

is quickly falling behind in terms of adapting to and adopting these new 

technologies. The tools for designers need to be developed in order for the 

field to avoid becoming a niche, strictly accessible to computer scientists 

and electrical engineers. The research for this thesis attempts to lay the 

foundation for some of these needs.





Chapter Two

Background

This chapter gives an overview of related work in the fields 

of Wearable Computing, Computational Garment Design, 

Embedded Devices, Fuzzy Logic, and Computational 

Literacy. Each of the five sections is distinct in goals 

and work; however, they are equal contributors to the 

foundation upon which this research is built. The ideas, 

technical innovations, and images presented in this chapter 

have served as inspiration and motivation throughout the 

construction of the Zuf system and its preceding projects.

“Visually, things have to make sense, in an almost 

mathematical way. I’m not anal or anything.. but 

when it comes to what I wear, I’m very precise. 

I know what’s going to work, and I know what’s 

going to suck.”

Cameron Diaz, in Vogue, May 2003.
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Wearable Computing and Related Work

Steve Mann, a pioneer in the field of wearable 

computing, defines a wearable computer as a 

computer that is small, worn on the body, and 

taken into the personal space of the user. (Mann, 

1998). Wearable computers are always on and always 

accessible, “more than just a wristwatch or regular 

eyeglasses: [they have] the full functionality of a 

computer system.” (Mann, 1998). Generally, these 

devices consist of eyewear, helmets, belts, vests, and a 

variety of bulky gear. Entire systems of garments and 

accessories contain the workings of a fully functional 

personal computer. 

Wearable computers began development in the 

late sixties, when Morton Heilig patented a 

stereophonic television Head-Mounted Display. Heilig 

is known more for his “Sensorama Simulator,” 

a virtual reality simulator developed in 1962 

with handlebars, binocular display, vibrating seat, 

stereophonic speakers, cold air blower, and a device 

close to the nose that generates odors which fit the 

action in a corresponding film (Rhodes, 1997).

Wearable computers from the 

1970’s (top) and 1980’s (bottom). 

Images taken from Jay Levine’s 

photoshoot prior to the “Origins 

of Cyberfashion” show during the 

2000 TED Conference. University of 

Toronto, 2003.
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The 1970’s brought the development of the 

first wearable devices, as well as one-handed 

keyboards, eye-mounted displays, and Hewlett 

Packard’s algebraic calculator wrist watch (Rhodes, 

1997). Early wearable computers initially 

challenged the idea of computers as immutable 

constructs. They specifically addressed the ability 

to run computers on batteries and, for the 

first time, brought the computer and human 

into mutually beneficial relationships (Wearable 

Computing, 2003). Thanks to work of wearable 

computing researchers throughout the seventies, 

eighties, and nineties, traditional interaction 

between human and computer is no longer 

limited to the comfort of a desk chair. 

Mann makes the distinction that wearable computers are reconfigurable 

and programmable by the wearer (Mann, 1998). Computational garments, 

in contrast, are not required to be reconfigurable, although they can be. 

A common misconception is that computational garments are synonymous 

with wearable computers. The fields overlap and depend upon each other 

in many ways, however they come from different ends of the continuum 

and it is important to understand their distinctions. 

Computational garment design concerns itself with the aesthetics of 

garments enhanced by technology or innovative materials with reactive 

properties. The technology is not the focal point of the garments, rather it is 

the aesthetic beauty, the unique interactions, and the interesting behaviors 

that emerge as a result of embedding technology in clothing. Technology in 

computational garments should be as invisible as the thread that holds the 

fabric of the garment together. 

Wearable computer of the 1990’s. Image 

from Jay Levine’s photoshoot prior to 

the “Origins of Cyberfashion” show at 

the 2000 TED Conference. University of 

Toronto, 2003.
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Wearable computing, on the other hand, is 

concerned with the functionality, robustness, and 

usability of the technology as it inhabits spaces 

on the body. To the general public, the phrase 

“wearable computing” elicits images of cyborg 

humans donning devices that transform them into something untouchable 

and unapproachable. Technical features offered by wearable computers 

take precedence in design over the aesthetic and physical properties of 

the garments that house them. Wearable computers tend to be considered 

a fashion faux pas. Bruce Knaach, a manager at IBM working on the 

development of wearable computers on the industry side explains, 

Wearing a computer isn’t a socially acceptable thing. You look 

like a soldier wearing half a helmet.. kind of Borg-ish. That 

forces it [the devices] into environments where people either 

don’t care what they look like or have it as a condition of 

employment (PCWorld, 1999).

In defense of wearable computers, when headphones and portable music 

devices were introduced in the late seventies, no one expected them 

to become a trendy, techno-accessory. Yet now they have a market all 

their own, with the most sophisticated, funkiest, sleekest, and ergometric 

designs landing on the shelves to date. People looking for a way to 

block aural stimuli from their surrounding environment and place them 

in a netherworld of pleasing sounds turn to their headphones. They base 

purchasing decisions on form, color, and technical quality. As Sony touts 

on their website, headphones have become “Not just an audio accessory, a 

fashion accessory...” (Sony, 2003).

Scrolling text T-shirt from Cyberdog, 2003. 
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It can be argued that headphones are in fact the first product in the field of 

wearable computing which has successfully entered the consumer market 

and become accepted by mass culture. We might wonder why wearable 

computers haven’t followed suit in popularity or trendiness, since technically 

they offer leaps and bounds more functionality than your basic portable 

music player and headphones can provide. Perhaps it is because the physical 

devices are bulky and awkward, conjuring images of cyborgs or unpleasant 

science fiction characters, or perhaps they need only withstand the test of 

time to slowly creep into public consciousness and acceptance.

Wearable computers are becoming a steadfast fixture in Internet lore. Their 

strong cult-following among scientists, electrical engineers, and Internet 

junkies might soon be their redemption, for these are the people doing 

the research that will eventually make the devices smaller, more efficient, 

and potentially more sleek and socially acceptable. Academic communities 

are firmly in place for wearable computing research. Over the last six 

years, the Institute of Electrical and Electronics Engineers (IEEE) has held an 

International Symposium on Wearable Computers (ISWC). 

At the MIT Media Laboratory, Prof. Sandy 

Pentland, Rich DeVaul, Thad Starner, the 

Wearable Computing group, MIThrill, and 

other faculty and research students have 

worked in this domain throughout the last 

twenty years. In 1997, the Media Laboratory 

hosted the first wearable computing fashion 

show, called “Beauty and the Bits.” The show 

was a collaborative effort between the Media 

Laboratory, Bunka Fashion College in Tokyo, 

Creapole in Paris, Domus in Milan, and 

Parson’s School of Design in New York 

(MIT Wearables, 2003).

A sketch of the Mushroom Cap: The 

Year 2018, a garment designed by Nanae 

Hashimoto, Ai Mizuno, Seonhyu Na, and 

Jennifer Healey for the MIT Media 

Laboratory’s Wearables fashion show. 1997.



Other institutions have joined MIT in wearable computing research. 

Stanford University’s Computer Science Department contains a Wearable 

Computing Laboratory which works on the “design of highly wearable 

general purpose PCs and improved technologies for the human interface 

to wearable computers” (Stanford University, 2003). Their research 

includes work in the areas of speech input and output and digital sign 

languages (Stanford University, 2003). The University of Oregon’s Wearable 

Computing Laboratory in the school of Computing and Information Science 

“investigates the use of cutting-edge mobile and wearable computing 

technology to assist people during social encounters in the real world” 

(University of Oregon, 2003). 

At Carnegie Mellon University, the Wearable Group is an interdisciplinary 

team of researchers working on software, hardware, and interaction 

design as it relates to wearable and pervasive computing (CMU Wearable 

Group, 2003).  Wearable computing research tends to overlap with 

research in ubiquitous computing, pervasive computing, context-aware 

computing, augmented realities, dynamic interfaces, shared information 

systems, personal computing, and safety control systems.

In addition to academic developments, the United States Military is funding 

many of the projects and research in wearable computing. The military 

is interested in improving the uniforms of soldiers in combat, such as 

providing them with clothing that would make them invisible, help protect 

them against injury, or heal wounds. The military has already deployed 

high-tech gear for urban warfare that includes global positioning, heads-up 

displays and networking capabilities (Kumagai, 2001).

Research in wearable computing must not only focus on technical quality 

and improvements, but must forge new ground in physical design and 

ergonomics. Only recently have various companies and academic labs 

started to conduct research that makes a concerted effort to improve 

the aesthetic design of wearable computers. Studies are being conducted 

to find optimal regions where hardware should be placed on the body. 

24
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Manufacturers like Xybernaut are producing accessories with specially 

sized pockets to house portable technology. Still, wearable devices are 

bulky, awkward, and techno-centric. In order to increase demand and 

begin acceptance into mass culture, wearable computer designs have 

a long way to go.

Computational Fashion Design 

and Related Work

Computational fashion design focuses on the 

aesthetic and social properties of clothing, 

questioning how technology might be 

embedded into garments to change the 

behavior of clothing and its physical properties. 

Technology is used as a material for 

construction, but does not take focus off 

the clothes themselves as beautiful elements, 

indicative of style, personality, and identity. The 

spectrum of behaviors possible from embedding 

technology into garments fall into the following 

categories. 

Dynamic / Static

Reactive / Disregarding

Disposable / Permanent

Mutating / Preserving

Communicative / Withdrawn

Informative / Mysterious

Humorous / Solemn

Computational garments can fall along any of 

the axes and also overlap with multiple axes. 

Each property is realized through choice of 

technology, material, color, fit, shape, texture, 

Maggie Orth’s Firefly dress (front) and 

Hussein Chalayan’s motorized dress (back), 

taken during the 2003 Wear Me exhibition 

in Rotherham, UK.
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and concept. An informative garment, for instance, should utilize an 

embedded system with good storage capabilities, whereas a communicative 

garment needs an embedded system with the ability to pass data to other 

systems via wireless connectivity, RF, or other means. Garments that mutate 

or change shape must be mechanically and structurally sound.

Computational garment design is just breaking forth into industry after 

years of academic work and research development. Some key players 

in the development and growth of computational fashion design as a 

field are described in this section. The researchers, artists, engineers, and 

designers described are pioneers. Their work has refocused the aims of 

many individuals and companies.

In addition to wearable computing research, the MIT Media Laboratory 

is conducting research in computational fashion design. Maggie 

Orth, Elise Co, Prof. Joe Paradiso, and 

others have developed conceptually beautiful 

and innovative projects in this area. Joe 

Paradiso is the director of the Responsive 

Environments Group. In the late nineties, 

he developed expressive footwear as a 

performance interface for dancers. The 

shoes wirelessly transmitted measurements 

recorded by sensors embedded in the shoes, 

thus providing dancers with control over 

the volume, tempo, and other musical 

parameters (Paradiso, 1999).

Maggie Orth was a Ph.D. student who 

worked with Rehmi Post and others to 

develop conductive threads that could be 

sewn into fabric and used to create soft 

circuitry for jackets, tablecloths, and dresses. 

The Firefly Dress, the Musical Jacket, and 

Dancers’ expressive shoes were developed 

by Prof. Joe Paradiso and his students for 

the 1999 American Dance Festival. MIT 

Media Laboratory.
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embroidered musical instruments are some 

of the projects Orth worked on during her 

studies. The Firefly Dress uses conductive fabric 

to distribute power throughout a dress so that 

as the wearer walks, LEDs brush against the 

power layer and illuminate (Orth, 1998). The 

Musical Jacket has an embroidered keypad 

on the top left chest which triggers the 

jacket to play musical notes when the keypad 

is touched (Post, 2000). The embroidered 

musical instruments likewise use conductive 

threads to create pressure sensors that trigger 

a computer to play music. The sensors look 

like intricately embroidered patterns on a soft, 

squeezable ball (Orth, 1998).

Elise Co presented the idea of computational 

fashion design in her Masters thesis 

“Computation and Technology as Expressive 

Elements of Fashion” (Co, 1998). She created 

very elegant examples of computational 

garment design, including Perforation, the 

Garment Chimerical, and Puddlejumper, 

among others. 

Co’s project Perforation plays with the 

transparency of light through the body. 

A winding fiber optic belt transmits light 

between matched arrays of perforations and 

the effect is a sense of transparency cutting 

through the core of a human body (Co, 2003). 

The Garment Chimerical uses a flat-screen 

LCD panel and computationally generated 3D 

graphics to project imaginary clothing into the 

Top: Elise Co’s Perforation, 1999.

Bottom: Co’s Garment Chimerical, 1999.
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physical world. “The display, worn on the 

back in a custom-built pack, shows a virtual 

garment in the context of an abstracted 3D 

representation of a male back. Through sensors 

embedded in an arm unit, the chimerical 

garment responds to body movements, breath 

and temperature” (Co, 2003). Puddlejumper 

is a luminescent raincoat that responds to 

droplets of rain (Co, 2003). 

Internationally, the Swiss Federal Institute 

of Technology’s Electronics Laboratory has a 

Wearable Computing Laboratory that “focuses 

on the hardware and system architecture 

challenges posed by the wearable computing 

vision” (ETH, 2003). Throughout Europe, 

research is starting to conceptualize in the areas of computational fashion 

design, in particular at institutions such as Italy’s Interaction Design Institute 

Ivrea and London’s Royal College of Art.

The intersection between fashion and technology is being explored by 

students at Parson’s School of Design in New York. Parson’s Center 

for New Design offers a course in Fashionable Technology. The course 

investigates the relationship between wearable technology and fashion 

(Seymour, 2003).

Commercial products from Levi Strauss & Co., Burton Snowboards, 

Apple®, Charmed Technologies, and other companies are starting to 

enter the market and capitalize on technology embedded into garments 

and accessories. Motorola Inc. offers the i90c limited edition phone 

with pearlized finish for Bloomingdale’s customers so that they can have 

sophisticated communication devices that are also fashion accessories 

(Motorola, 2002). Motorola is also developing garments that integrate 

Sketch of student work in Parson’s 

Fashionable Technology Class, 2003.
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PDA’s, phones, and MP3 players in interesting, ubiquitous ways. These 

garments are not commercially available yet, but were on display at the 

Wear Me exhibition that took place in the UK during 21-26 April 2003. 

In the spring of 2003, Burton Snowboards partnered with Apple® 

Computer to create a snowboarding jacket that houses a sound and control 

system for Apple’s iPod. A fabric keypad on the arm, developed by the 

company SOFTswitch™, controls an iPod that is stored on the chest. The 

“Burton Amp” jacket is made out of 3L GORE-TEX® fabric, and is on sale 

for a limited time at the non-trivial price of $500, iPod not included. 

A relatively new company, ElekSen, is also working on soft switching 

technology which depends upon contacting layers of conductive fabric or 

varying resistances across partially conductive fabric. Their ElekTex™ fabric is 

capable of electronic sensing and can be stretched, scrunched, and washed 

(ElekSen, 2003). They recently announced a commercially available flexible 

keypad that will come with Orange SPV Smartphones (ElekSen, 2003).

Left: Motorola Inc. design on display at the Wear Me 

exhibition, 2003. Right: The Burton Amp jacket, 2003.



30

Royal Philips Electronics and Nike, Inc. have likewise created an alliance 

to merge athletic and digital technology expertise because “athletes want 

technology that stimulates and enhances the athletic experience” (Royal 

Philips Electronics, 2002). 

Reima Smart Clothing is a research company that has the goal of improving 

basic clothing through adjustable insulation and ventilation, although their 

current work has primarily focused on integrating clothing with mobile 

devices (Reima, 2003). Cyberdog is a company based in the United 

Kingdom that sells T-shirts 

and vests with reflective 

material or reprogrammable 

illuminating displays. Their 

“Light S/S Red Alert” shirt, 

for instance, has a red 32 

character scrolling display on 

the chest of a black shirt. 

It sells for approximately 90 

dollars (Cyberdog, 2003).

In addition to academic and 

commercial endeavors, a few fashion 

designers have explored the area of 

computational garment design. These 

designers are the exception, however. 

In general the fashion industry has 

been slow to incorporate technology 

into their designs. Hussein Chalayan’s 

Spring 2000 collection, Before Minus 

Now, contained the Airplane Dress, 

a motorized dress with white panels 

that open and close around the body. 

Erina Kashihara has created skirts 

Hussein Chalayan’s motorized dress (bottom) and a close 

up view of one motor (top), 2003.
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with glowing orbs and layers. In addition, many designers have embellished 

elements of clothing with imagery of printed circuit boards or other 

technical looking patterns.

Overall, the fields of computational garment design and wearable 

computing are slowly moving towards each other on the continuum 

as better technology, increased research, and efficient designs are being 

developed. But until fashion designers are as free to explore and design 

with technology as they are with fabric and threads, the industry and all the 

possibilities for this work will continue to lag behind.

Technology Behind Computational Fashions

Outside the scope of wearable computing and 

computational garment design, interesting scientific 

research is being done that will eventually impact the 

design and construction of garments. 

Powering garments is a tricky and burdensome 

problem because batteries tend to be heavy and bulky. 

Innovations in the area of power will greatly improve 

the aesthetics, feel, and drape of computational 

garments. For instance, at the University of California, 

Berkeley, chemists are developing solar cells that are 

cheap, can be produced easily, and can be placed on 

plastics. They are based on inorganic nanorods and 

so they are also small (Sanders, 2002). In addition, 

Material scientists at MIT are working to develop 

flexible and thin batteries (Sadoway, 2002). At the 

Media Laboratory, Joe Paradiso, Nathan Shenck, and 

others worked to develop a pair of shoes that generate 

power from excess energy expended while walking 

(Shenck, 2001).

Images of International Fashion 

Machine’s Electric Plaid, 2003. Photo 

courtesy of Maggie Orth.
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Companies are also working on problems associated with 

power. Casio, for instance, is developing small, high efficiency 

fuel cells for potential use in PDA’s, laptops, and mobile 

devices (Casio, 2002). VoltaFlex is a company developing 

high power, thin-film batteries based on the research from 

MIT’s Materials science department (VoltaFlex, 2003).

Improvements in sensing technology will have an enormous 

impact on the development of computational garments. 

Currently, researchers are working on improvements and 

developments that include capacitance loading, flexible switches, embedded 

fringe sensing, and more. Danilo DeRossi of the University of Pisa is working 

with students to develop wearable strain gauge sensing technologies that 

record posture and movements (DeRossi, 2002).

In the textile industry, textile scientists, polymer chemists, physicists, and 

bioengineers are starting to brainstorm applications for “intelligent” fibers 

and fabrics that they hope to develop (Waters, 2002). Maggie Orth’s 

company, International Fashion Machines, is developing hand woven textiles 

that use a reflective color changing medium to create fabric weaves that have 

dynamic, programmable patterns and colors. They call the medium Electric 

Plaid, and it premiered at the Cooper 

Hewitt National Design Triennial in 

New York City in April 2003, as 

part of the project Hydra-House 

(Orth, 2003).  At StarLab NV/SA, a 

private lab in Belgium, researchers 

developed “Fiber Computing,” which 

consisted of transistors fabricated into 

silicon fibers that could then be 

integrated into textiles (Cakmakci and 

collaborators, 2001). Top: A flexible, thin-film battery produced by 

VoltaFlex, 2003. Bottom: Parasitic Shoes. Courtesy of 

Joe Paradiso, MIT Media Laboratory. 2003. 
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Embeddable Devices

Many popular, powerful, and relatively inexpensive 

microcontrollers are on the market these days. Functionality 

ranges from basic logic control up to fully functioning computers 

with wireless Internet, RF communication, BlueTooth, global 

positioning capabilities, and more. Microchip, for instance, 

has a vast selection of programmable devices called PIC 

microcontrollers. Hundreds of families of PICs exist, and users 

can write code for them using assembly language, a variation 

of C, even BASIC. In fact, microcontrollers exist that can be 

programmed by most popular software languages, such as Java, 

or Logo. Others require a hardware specific language, machine 

code, or assembly code. Rabbit Semiconductors, Parallax, Atmel, 

and Texas Instruments are some of the many companies which 

manufacture microcontrollers and embeddable devices.

With so many options on the market, it can be daunting for a 

designer to know where to turn when building a computational 

garment. The languages, functionality, and cost are all factors 

that must be taken into consideration when choosing the right 

device. Particular programming, engineering, and mathematics 

skills are generally required or assumed in order to use the 

devices. The skills are desirable but may not exist yet for designers 

setting out to build computational garments.
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Fuzzy Logic

Fuzzy logic was designed to model the uncertainties of natural language, 

thus becoming an obvious choice as a way to provide designers with a 

powerful, yet intuitive, programming language. Fuzzy logic is a form of 

boolean logic that is capable of handling partial truths, or values that are 

not absolute (Buckley, 2002). Instead of assigning values to be completely 

true or completely false, elements fall in a subset between two absolute 

ends. Thus, a mapping from one set to another is not discrete. Subsets are 

described by membership functions, which describe the degrees to which 

elements belong to the set. For instance, the membership function for a 

set S describes to which degree the statement “Element X is in set S” is 

true. Users of fuzzy devices establish rules for how they expect their device 

to behave given certain circumstances, or inputs. The collection of rules is 

mathematically analyzed in order to determine actual behavior. 

Fuzzy logic was developed by Lotfi Zadeh, a professor in the Graduate 

School of the Computer Science Division, Department of EECS, University 

of California, Berkeley. He is also director of Berkeley’s Initiative in Soft 

Computing (BISC). Dr. Zadeh has been an influential researcher of system 

theory and decision analysis. More recently, however, his work has focused 

on the theory of fuzzy sets, fuzzy logic, soft computing, computing with 

words, and newly developed computational theories of perception and 

natural language. Applications for his work include artificial intelligence, 

linguistics, logic, decision analysis, control theory, expert systems and neural 

networks (Zadeh, 2003).
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Dr. Zadeh’s recent work on computing with words is particularly interesting 

and important in this discussion of building a fuzzy logic programming 

environment. Much of the success of this environment lies in its ability to 

provide a means for non-technical and non-mathematical users to think 

about and connect with programming and computing. Taking advantage 

of the structures of natural language is an obvious way to approach the 

problem. Humans communicate with language on a daily basis. They are 

typically more familiar with quantifying and describing relationships and 

behaviors with language and words than they are with numbers and 

equations. Finding a logical, rigorous way to do our computation with 

language and words rather than with discrete values means we have found 

a key to unlock the door between programmer and designer.

In 2001, Paul P. Wang put together a book entitled “Computing with 

Words” that explores the ways in which we can harness the expressive 

power of words and propositions through computational means. One of 

the reasons why fuzzy logic is so powerful is because of the way it uses 

language to compute. The input and output devices are defined using 

nouns, and each variable is assigned to an adjective which modifies the 

nouns. The creation of simple English language sentences is enough to 

create robust and elegant computational capabilities.

Fuzzy logic has been implemented in control systems for many years. 

General Electric created a steam turbine controller that uses fuzzy logic, 

Nissan developed a fuzzy automatic transmission controller, and Matsushita 

Electric has built fuzzy washing machines and vacuum cleaners (Chiu, 

1998). Researchers have even worked on building fuzzy windshield wipers 

(Cheok and collaborators, 1996). Fuzzy logic has many applications in 

feedback control systems because of its ability to enhance the capabilities of 

devices, reduce operating costs, and mimic human intuition (Chiu, 1998).
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The fuzzy logic infrastructure of the Zuf system 

allows users to control their hardware through 

linguistic signifiers and conversational “If ..., 

then ... “ sentences. The use of natural 

language makes the process of programming 

more intuitive and familiar for users with non-

technical backgrounds. Instead of writing discrete steps dictating exactly 

how the hardware should behave, a user generates a collection of rules. 

The mathematics behind fuzzy theory allows concrete control to be 

generated from these rules, even if the rules are uncertain or conflicting. 

Vague declarations for how a device should behave need not result in 

uninteresting or inoperable programs, rather they might evoke obscure - 

perhaps even charming - behavior due to the mathematics of fuzzy theory. 

Fuzzy logic reasoning allows for organic behavior on the part of the devices. 

A fuzzy algorithm works by applying a construct called a membership 

function to a set of rules. Membership functions are graphical 

representations defining how much an element belongs to a set. They place 

a weight on the value of each input. Through a combination of scaling, 

merging, and calculating the center of mass of all membership functions, 

the fuzzy algorithm creates a discrete output value. Generally, membership 

functions are triangular in shape, but can also be trapezoidal or bell shaped. 

The area covered by a membership function determines how acutely and 

strongly different elements belong to the set it describes.
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The simple fuzzy algorithm implemented by the Zuf system proceeds as 

follows. First, each input is mapped to a membership function. Second, 

the input values obtained from the sensors are mapped to a membership 

value obtained from that input’s membership function. This determines 

the input value’s weight. Next, for each rule, the input value’s weight 

scales the membership function of the rule’s output. Each rule is processed 

mathematically and compared against values set by other rules using min-

max comparisons. Then, all scaled membership functions for an output 

are merged together. After each rule has been taken into consideration, a 

centroid calculation generates the discrete value for the output in question. 

The centroid is calculated 

using the following equation:

Fuzzy logic algorithms are capable of processing complicated rules that 

relate several elements, using the boolean relationships AND, OR, and NOT. 

These rules maintain the basic “If ..., then ...” structure, such as “If A and 

B, then C.” The AND operation relates to the intersection of two sets. The 

rule would be processed by taking the minimum of the weights of A and 

B. The OR operation relates to taking the union of two sets, and rules 

containing an OR relation would be processed by taking the maximum of 

the weights. Finally, the NOT operation relates to the complement of a set, 

and rules containing a NOT relation would be processed by subtracting the 

weight from one.

In the context of computational fashion design, fuzzy devices make sense 

as the glue to bind the behavior of output elements (i.e. motors, lights, 

buzzers) to the values of input sensors (i.e. microphones, photoresistors, 

fabric switches). The sensors trigger certain behavior from the outputs, 

and one garment might contain multiple sensors or outputs. With each 

additional component, the structure of the driving code increases in 

complexity. However with a fuzzy device, the designer simply adjusts their 

set of rules to accommodate for new components, and if some cases are 

unaccounted for, the device still behaves reasonably.

mi  xi 

mi

 Σ i=1 

i=n

 Σ i=1 

i=n
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Computational Literacy

In addition to the technical background, this research was built upon 

theoretical ideas about computational literacy and a constructionist 

approach to education. The goals of the Zuf system are to empower 

designers, excite them about learning and using computational elements, 

and to enable them to freely design with embedded systems as a medium. 

The Zuf system must increase their level of computational literacy, therefore 

it is more than just a development tool, it is an educational tool.

The Zuf system builds on the ideas of Jean Piaget, a child psychologist 

who believed that intelligence is a form of adaptation, and knowledge 

is constructed through the processes of assimilation and accommodation. 

Piaget developed a theory called “Constructivism” that believes our 

interaction with objects and events helps us conceptualize solutions and 

ways of thinking.

To understand is to discover, or reconstruct by rediscovery, 

and such conditions must be complied with if in the future 

individuals are to be formed who are capable of production 

and creativity and not simply repetition (Piaget, 1974).

Seymour Papert, a mathematician and one of the early pioneers of Artificial 

Intelligence (AI), collaborated with Piaget for many years. Papert conducted 

research on the ways technology can be used for learning and creative 

thinking. Piaget’s theory of constructivism helped Papert develop his own 

theory, which he called “Constructionism.” Constructionism adds an extra 

layer, asserting that people construct ideas most effectively when they are 

constructing personally meaningful objects.
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Constructionist ideology resonates with this research and my desire for 

computational designers to have the skills and access to build any 

component of their work, to learn about their relationship to technology, 

and to develop depth in their projects as a result of exploration during the 

development process.

Seymour Papert is interested in the kinds of computational models that 

lead to better thinking about powerful developmental processes (Papert, 

1980). In my work I am trying to construct such a model for hardware 

development by fashion designers. My research in embedded system 

design has been influenced and informed by many existing educational 

programs available on the market and within academic research settings. Its 

theoretical foundations lie in the research about ways people learn through 

designing with technology, such as the writings of Seymour Papert, Mitchel 

Resnick, Sherry Turkle, and Alan Kay, to name a few.

Computer Literacy can be defined as knowledge or competence with a 

computer, such as having the ability to turn it on, play a CD-ROM, browse 

the web, or use the mouse. As Andrea diSessa describes in his book, 

Changing Minds: Computers, Learning, and Literacy, computational literacy 

is different than computer literacy, for it goes beyond a casual familiarity. 

On a large scale, computational literacy would enable civilization to achieve 

things previously unimaginable (diSessa, 2000). For this thesis, the term 

“Computational Literacy” means having the ability to program or take 

advantage of the computer’s ability to compute, as well as having an 

awareness of the internal hardware and processes of a computer. The 

term refers to both the operational understanding of a computer and the 

ability to utilize the computing power of a hardware device or machine. 

Computational Literacy implies an intuition about how computers work and 

how they can change or impact the ways we think and view the world.
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Concepts about transparency are important to this work as well. Sherry 

Turkle describes the idea of “transparent” computing in her book, Life 

On The Screen: Identity in the Age of the Internet. According to Turkle, 

transparent computing once referred to the idea that software programs, 

operating systems, and user interfaces didn’t block a user from being able 

to “get inside” the machine and take control over what was going on 

at the machine code and hardware level. Nearly ten years later, however, 

the definition of transparent computing had shifted. People who spoke of 

transparency meant that their machine didn’t block them from getting work 

done. Their machines were transparent because they could “easily see how 

to make it work” without necessarily knowing how it’s working underneath 

(Turkle, 1995).

Both of these definitions of transparency apply to the construction of the 

Zuf system. On one hand, the fuzzy logic control is a form of the second 

definition of transparency in that it allows designers to get their work 

done without necessarily understanding the process behind it. On the other 

hand, the system supports the initial definition of transparency because it 

encourages designers to make computation transparent by enabling them 

to build and construct technology themselves.

The target audience will be interested in building garments and finding 

the beauty in computational components. The instruments they use should 

enable them to create projects that reflect these aesthetic standards. As 

Resnick states in his paper, Beyond Black Boxes: Bringing Transparency and 

Aesthetics Back to Scientific Investigation, 

The merits of the instrument-building tradition go beyond the 

immediate needs of research. Indeed, one element of that 

tradition is a design philosophy that emphasizes elegance and 

beauty in the material objects of scientific work (Resnick, 2000).
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Several systems have been designed by Prof. John Maeda and by Ben Fry 

and other students in the Aesthetics + Computation Group at the MIT 

Media Laboratory that focus on the aesthetic merits of scientific work. 

Design By Numbers (DBN), and Proce55ing are two systems that introduce 

basic ideas of computer programming within the context of graphic design. 

In DBN, dots, lines, and fields are drawn using computational concepts like 

iteration, repetition, variables, and conditional statements. Proce55ing is a 

learning program and environment for creating systems in JAVA with real 

time three-dimensional graphics, color, and other features that DBN lacked. 

The spirit of Proce55ing is to act as an electronic sketchbook where people 

can learn the fundamentals of computer programming within the context 

of the electronic arts (Reas, 2003).

“It is (Maeda’s) belief that the quality of media art and 

design can only improve through establishing educational 

infrastructure in arts and technology schools that create strong, 

cross-disciplinary individuals” (Aesthetics + Computation 

Group, 2003).

 

DBN and Proce55ing are powerful educational tools designed for adults, but 

they only allow users to create programs that manifest themselves on the 

screen. With Proce55ing, they can create beautiful graphics that are both 

interactive and dynamic. Other programming systems are also limited to 

the screen. Squeak, a project developed by Alan Kay and colleagues, is a 

program designed for children to express ideas about math and science. On 

the Squeakland website it claimed that its threshold is set low enough for 

five-year-olds. With Squeak, users can build computational systems. 

Squeak is an idea processor for children of all ages

(Squeakland, 2002). 
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Boxer is a project that began at MIT but is now under development at UC 

Berkeley. Boxer is a computational medium based on a literacy model, and 

designed for building screen-based tools with ease (diSessa, 2000). 

In each of these programs, users are unable to extend the concepts into the 

physical realm of hardware control. Other groups, however, have explored 

ideas about hardware control. For example, members of the Lifelong 

Kindergarten Group (LLK) at the MIT Media Laboratory are working on the 

development of educational tools for learning concepts about hardware 

and computation. Over the past decade, LLK worked on the development 

of Programmable Bricks. Programmable Bricks are tiny computers that 

control motors, receive information from sensors, and communicate with 

infrared. The bricks can be used for robotics or other investigations, such as 

body-monitoring and data collecting. 

Programmable Bricks have expanded into two areas. On the industry 

side, they became the foundation for LEGO Mindstorms, a commercially 

available toy that lets users build robots and computational projects using 

LEGO blocks. Academically, the Programmable Bricks evolved into tiny 

computers called Crickets. Crickets are controlled using a dialect of the 

Logo programming language, called LogoBlocks. LogoBlocks is a procedural 

language that includes constructs like if, repeat, and loop, among others. 

Users program by snapping graphical blocks together, much like snapping 

LEGO bricks into place. (LLK, 2002). 
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In addition to Crickets, I worked with my colleagues Justin Manor and 

Simon Greenwold to create a programming environment and language 

called Nylon that lets users write the controlling code for programmable 

devices in addition to developing dynamic graphics. Nylon builds off DBN in 

that it was designed for artists and visual designers. Nylon and LogoBlocks 

are each very powerful and are used in a variety of educational settings, 

however they are based on procedural languages and follow traditional 

models of computation. For this thesis, I move one step further to develop 

a system that doesn’t rely on procedures and algorithms, but instead upon 

the structures of natural language and fuzzy logic calculations.

All of the work in this chapter has provided the framework upon which I 

am building the Zuf system. Without the theoretical foundations of such a 

varied collection of educational systems, it would be difficult to understand 

and discuss the intricate relationships and experiences that adults and 

children have with computational systems. These programs and projects 

provided my work with a basis to expand upon, both conceptually as well 

as in execution.





Chapter Three

Preliminary Work

An important component of this research has been 

the process of building garments and thinking about 

computational garment design. A collection of garments 

and handbags were constructed that explore the different 

conceptual spaces of computational garment design. This 

component of the research is two-fold. On one hand 

it facilitated the process of defining and clarifying the 

field of computational garment design by illustrating 

key characteristics in each garment, while on the 

other hand, the garments helped pinpoint particular 

problematic spaces or challenging tasks that designers 

would encounter during the development process of their 

own garments. The projects described in this chapter made 

it possible to isolate the needs and concerns of designers 

building computational garments, and this knowledge was 

used to develop the Zuf programming system.

Whether we decide to fight them or join them 

by becoming computers ourselves, the days of the 

human race are numbered.

Katherine Hayles discussing the computational universe, 1999
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The following collection of work directly correlates design decisions that 

went into the development of Zuf. The decisions include the ability 

to program devices over the Internet or to easily redesign relationships 

between sensors and outputs. The work also illustrates different properties 

of computational garments, such as being reactive, dynamic, mechanical 

or mutable. In addition, these garments helps us understand the 

social, emotional, personal, and aesthetic characteristics of computational 

garments, pressing our understanding beyond simply technical knowledge. 

Reviewing this collection of work adds depth to our understanding of 

computational garment design.

Peppermint

Peppermint is a handbag designed to provide information to its owner 

over time in a way that is meaningful to the owner but ambiguous to 

others. Peppermint is a conceptual piece that wasn’t implemented, however 

a prototype of its form was built and 3D CAD models of the bag were 

generated using Rhinoceros, a NURBS modelling software for Windows. The 

front plate of the bag was built from laser cut acrylic and implemented 

using a collection of eight servo motors. 

The idea behind Peppermint was to build a 

bag that subtly informs the owner of specific, 

important events during the day. The time 

of the events would be progammed at the 

start of the day by the owner, through 

a serial interface and simple software that 

runs on a personal computer or portable 

device. Small rotating discs are fixed on the 

front plate of the bag and move around in 

slow, elegant, and methodical patterns. As 

the notable event (an appointment, meeting, 

test, show, etc.) comes near, the discs alter 

Top view of the Peppermint prototype, 2001.
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their speed and the pattern in which they move. These subtle changes occur 

gradually, becoming more intense as the event approaches, thus triggering 

the memory of the owner. Quicker, more sporadic behavior alerts their 

attention to the bag, reminding the owner of the event programmed at the 

start of the day. Much like the way people tie a ribbon around their finger 

or keep a rubber band around their wrist as reminders for an important 

event, Peppermint uses non-explicit methods to trigger the memory of its 

owner and keep their schedule in tact.

Typical alarms beep or sound in loud and often annoying ways, interrupting 

the public soundscape and drawing unnecessary attention to a person. 

Peppermint, on the other hand, is a non-imposing alarm that reminds the 

owner through a change in his or her perception. Other people who see 

the bag might take note of the fact that its behavior changes over time and 

may find it interesting because of its aesthetic, however 

they would be unaware of its ability to trigger memory, 

and unaware of the meaning behind its kinetic patterns. 

The beauty behind the aesthetic design of the bag 

would act as a mask to the world, keeping its secret 

capabilities and intents hidden to all but the owner in 

the same way that it hides and protects physical objects 

carried within the bag.

Peppermint is an example of a garment that would 

require new information to be loaded into it frequently. 

Users of a garment like Peppermint might not be 

able to bring their laptop or desktop computer with 

them everywhere, yet they might want to reprogram 

Peppermint while travelling or away from their personal 

computer. Peppermint was a major motivating factor 

in the decision to create a system that is programmed 

over the Internet. Being able to communicate with your 

garments regardless of where you are seems important 

since clothes are inherantly mobile and non-static. 

Left: 3D rendereing of Peppermint, 

2001. Right: front view of the 

Peppermint prototype, 2001.
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Belly

Belly was intended to help designers think about and 

visualize the space of the body and spaces around 

the body that our clothing and technology inhabit. 

By designing garments with careful consideration to 

their form, shape, size, and weight, technology can 

be embedded into garments that don’t weigh down 

the wearer or cause undue stress or strain upon their 

body. It also means that technology can be embedded 

in such a way that it becomes virtually invisible to 

the wearer. Lighter and more flexible components are 

being developed in the electronics industry, 

however there is still a long way to go until 

electronic components are trivial in size and 

weight. Therefore it is extremely important for 

designers building computational garments to 

think about the spaces technology takes up 

and how they impact the movement and 

physical comfort of the wearer.

Belly is a series of 3D CAD renderings of a 

human form wearing a backpack that morphs 

to the shape of the human’s body. The 

bag is designed to provide enough physical 

space for the technology which drives the 

computational element of the bag, and for 

the storage and carrying capabilities of the 

bag. The technology is embedded in a space 

that rests along the small of the back and 

is out of the way of excessive movement 

and contact with the body. This protects the 

technology from damage, and protects the 

human from discomfort.

3D renderings of Belly, 2001.
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Elroy

Elroy was the first fully operational and wearable garment completed 

for this research. Elroy is a dynamic, illuminating dress that encodes the 

time of day and displays it on the wearer. The hours of the day are 

encoded in binary along the right breast, while the minutes are broken 

into fifteen minute periods and flash down the left leg. Elroy contains 

several Panasonic electroluminescent (EL) panels cut to size and sewn 

into the dress. The clock and signalling is controlled by a Rabbit 2000 

microprocessor, a product of Rabbit Semiconductors. An inverter turns 

the five volt DC signal into 120 volts AC current needed to light the 

EL panels. The inverter is made by JKL Components Corporation, part 

number NDL-217. Each panel also needs an optoisolator, which allows the 

logic levels from the microprocessor to control the on/off states of each 

panel, switching the AC current on and off. The optoisolator used in Elroy 

is the MOC3043 from Fairchild Optoelectronics Group.

Elroy is sundress made from green, water-resistant polyester fabric. It has 

wide, one-inch straps that leave the shoulders and meet at a T along the 

nape of the neck. A zipper runs along the back of the dress, from the 

neck to the waist. There are seams along the left leg that border the 

electroluminescent panels, seams around the right breast, surrounding 

the chest panels, one seam that runs along the hips entirely around 

the dress, separating it into a low-waisted garment, and a seam that 

runs directly down the center of the 

dress vertically, on both the front 

and back. The seams are visible but 

stitched using army-green thread so 

as not to draw the eye’s focus away 

from the illuminating panels.

Photograph of the Elroy 

hour panels, 2001.
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The pattern of the illuminating panels behave 

in the following way. During the first fifteen 

minutes of an hour, the top panel on the 

leg flashes once every five seconds for the 

first five minutes, twice every five seconds 

for the second five minutes, and three times 

every five seconds for the last five minutes. 

During the second fifteen minutes, the top 

panel stays lit while the second panel down 

from the top flashes in the same pattern. 

During the third fifteen minutes, the top two 

panels stay lit while the third panel flashes, 

and so on. The panels reset at the top of each 

hour and repeat this behavior. 

The four panels on the chest, which encode the hours, change patterns at 

the top of each hour, remaining in one illuminated pattern during the entire 

hour. Each time one of the minute panels flashes on, the hour panels turn 

off briefly. This design is for two reasons, the first to save power by reducing 

the number of panels simultaneously lit. The second reason is to add more 

dynamic and eye-catching behavior to the dress.

The binary pattern for the hour panels was determined by numbering each 

panel in a clockwise manner from zero to three, starting at the top left. The 

zero panel represents the 20 place, the one panel represents the 21 place, 

the two panel represents the 22 place, and the three panel represents the 

23 place in binary representation. Every hour from one o’clock to twelve 

o’clock in a twelve hour time cycle can occur, since only four binary places 

are needed at maximum to encode the numbers one through twelve.
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Elroy plays with the idea of being able to obtain information from our 

clothing that is meaningful to the wearer but not to the general public, 

much like the idea behind Peppermint. The time information displayed by 

Elroy is encoded in such a way that external viewers would not understand 

that it tells time if they passed the dress on the street. With practice, 

however, the information can be quickly decoded by the wearer with a 

quick glimpse. The panels are located in positions easily grazed by the eye, 

continually providing the wearer with a sense of the passing time. Elroy 

has meaning to one specific, intended person, but not to the public at 

large.  With so much information that can be collected, stored, and viewed 

through the use of sensors, infrared, or 

wireless communications, it is important for 

designers to think about how the information 

is made available and processed. Questions 

must be asked during the design process 

about whether it is necessary for one person, 

a small group of people, or the entire public 

to be able to understand the information 

displayed by our clothing.

One area that would be interesting to explore 

is the development of visual languages for the 

body, designed so that subsets of people can 

understand data and interact with garments 

to display information on demand or to 

input information at whim. The languages, 

a form of “body slang,” might reflect 

varying cultural or style differences among 

groups of people. They might relate to the 

gestural languages currently being researched 

to improve human-computer interaction. 

Elements of these languages could also be 

tailored to exploit the relationship between 

human, body, and clothing.

Top: image of Elroy’s minute panels. Bottom: 

Elroy in use by the author. 2001.
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Since Elroy was the first garment I built for this research, and also 

the first time I programmed for the Rabbit2000 microprocessor, I was 

amazed and daunted by the slow learning curve required to use the 

hardware. First, the development environment for the microprocessor 

was not intuitive to use. It comes equipped with debugging capabilities 

that I hardly took advantage of because the documentation about how 

to use the debugger was poor, and because it assumed a very low level 

understanding of the hardware, an understanding that was uneccesary 

for my project. Second, the language and methods for addressing the 

input and output pins took many weeks to master, as they were again 

established assuming a very low level understanding of the harware. 

When designing the Zuf system, it became a requirement that both the 

interface and simulation did not prove to hinder or block novice users 

from being able to succesfully think about, design, or use an embedded 

device. As their experience with the devices increases, they might chose 

to switch to more sophisticated methods which let them work with the 

microcontrollers on a low level. However, for an entry level tool that 

should help encourage, entice, and excite designers, such requirements 

are unnecessary and counter-productive.

Left: Sketches of the Elroy time sequencing. 

Below: Elroy in use by a model, 2001.
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All images on these pages 

are sketches of Elroy’s 

hardware, drawn by the 

author, 2001.
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Iris

Iris is an example of a reactive garment. 

It is a small handbag that contains two 

electroluminescent panels, a piezo buzzer, and an infrared sensor. When 

the sensor detects motion of the bag moving past the body of the wearer 

or past objects in its vicinity, the panels and buzzer respond in a quick, 

alternating rhythm. The result is a playful interaction between wearer and 

garment that resonates with the bag’s movement. 

Iris explores ideas about interacting with and altering our garments based 

on our physical behavior. The way our body moves in our clothes and 

in relation to our accessories has strong effects on how long a garment 

lasts, where it wears out or breaks down first, and how it make us 

physically feel when we wear or carry the item. The way our garments 

move will also impact the computational components of technologically-

enhanced garments, in both destructive and constructive ways. Constructive 

ways include intentional aesthetic changes, protective strategies to prolong 

usability, or triggers to change a garment’s dynamic behavior. Sensors 

might detect that the garment is moving or being jostled, versus when 

it is inactive or still. They might detect when the garment enters a room 

with hotter or colder temperatures or varying light levels. They might 

sense when the garment is in contact with the body or other objects. 

Each of these inputs can trigger the garment to change its state, such 

The internal ciruitry for Iris, 2002.
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as small changes in color or light, as well 

as larger changes such as structural shifting 

or changes in material properties. In essence, 

the garments become alive. On the contrary, 

destructive ways include breakage, general 

wear and tear, power shortages, or possibly 

erratic and unpredictable behavior. 

Iris was built using the Nylon system, 

an integrated software and hardware 

development platform described later in 

this chapter. Using the system made the 

development of Iris very fluid, and helped 

me realize the concept quickly. The project 

was especially fun to build because of the 

ease at which I could move between building 

the bag, working on the hardware, sewing, 

and programming. Iris verified the importance 

of having an integrated system aimed at 

designers. Its only drawback was the reliance 

on Nylon’s procedural language. The fuzzy 

logic reasoning implemented in Zuf would 

have made the construction of Iris even more 

fun, more elegant, and more robust. Less 

time needed to be spent calibrating the input 

sensor for exact values and worrying about 

covering all cases so the system didn’t fail. The 

fuzzy logic algorithm used by Zuf would have 

meant I needed to establish only a few rules in 

order to generate the same behavior.

Images of Iris in use by the author, 2002.
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Saturnpants

Saturnpants are kinetic Capri pants 

that detect the proximity of 

approaching strangers and respond 

to the direction of the stranger’s 

movement and distance from the 

wearer. Soft fabric shapes dance 

around the legs of the pants. The 

direction in which the shapes turn 

and the position in which they stop 

directly correlates to the movement of 

an approaching or retreating person. 

Two servo motors and one ultrasonic sensor are embedded into the 

garment. The sensor is made by Devantech and is called the SRF04 

UltraSonic Ranger. It measures from three centimeters up to three meters 

in distance. The device runs on five volts, weighs 0.4 ounces and is just 

over an inch and a half in length. Positional control of each motor is 

determined by taking the input from the sensor, processing it with a PIC 

microcontroller, and outputting the appropriate pulse-width modulated 

(PWM) signal to the motors. 

Saturnpants are made from orange and green wool, and fit a woman of 

dress size eight. The one and a half inch waistband is secured by Velcro 

along the front. There are no pockets on these pants. The back of the left 

leg from the center seam to the left side seam are made of green wool, 

whereas the rest of the pants are a salmon colored wool. The right leg 

has three patches sewn to the surface. One green patch is placed halfway 

down the leg just to the back of the side seam, and contains the sonar 

sensor, which peeks out through two holes. The second green patch is 

The rotating shapes on Saturnpants, 2002.
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placed four inches from the hem of the leg, just to the front of the side 

seam. It contains the servo motor which controls the circle shape. The third 

patch is salmon and is just to the back of the side seam, two inches above 

the hem. It contains the servo motor which controls the square shape. Wires 

that connect the sensor and two motors to the PIC run along the side seam 

and convene at the hem of the right leg.

Much like Iris, the Saturnpants project explores ideas about garments which 

respond to external stimuli and environmental changes. The difference 

between Saturnpants and Iris is that one exhibits changes through kinetic 

motion while the other exhibits changes through light and sound. It is 

important to recognize the different ways in which garments can be altered, 

as we are not limited to simply one kind of technology or one type of 

dynamic behavior.

Building Saturnpants required a lot of patience to test different behaviors 

with the shapes. I played around with the speed and abruptness at which 

the shapes responded in order to elicit different emotional reactions from 

people who interacted with the garment. Slow, subtle changes created a 

different reaction and felt less playful than quick, jumpy behavior. Each time 

that I decided to try new behavior, I had to wait through a several minute 

cycle while the code compiled and burned onto the PIC microcontroller. This 

bottleneck discouraged me from making many changes or experimenting 

with the garment. 

This project helped me realize the importance of being able to quickly 

change code that runs on a device. It also brought to light the value in a 

software simulation. I would not have had to wait through the compile/burn 

cycle just to test a new behavior or debug an interaction if I could have 

simulated it in software first. I took both of these realizations to heart when 

building the Zuf system. It is important that a program like Zuf lets designers 

easily and quickly experiment with their code and with the behavior of the 

garments they are building.
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Scribble

Scribble is a software program that lets a user 

quickly illustrate and render a pattern for a skirt. 

The program allows the user to computationally 

generate the pattern printed on the garment, then 

it outputs the rendered design to a PostScript 

file. In a matter of minutes, hundreds of different 

designs can be generated and queued up for 

printing. The file contains the outline of a basic skirt 

pattern so that the printed material is ready to be 

cut and sewn together directly after printing. The 

process not only eliminates the step of cutting and 

pinning fabric and paper patterns for clothing, but 

it also lets the user regain an element of control 

over the design of their clothes. A large format 

inkjet printer, such as the DesignJet 1055CM from 

Hewlett-Packard, can print the rendered files onto a 

large roll of cotton fabric or other materials.

The software for Scribble was written using 

Proce55ing, a language developed by Ben Fry 

and Casey Reas, of the MIT Media Laboratory 

and Interaction Design Institute Ivrea, respectively. 

To use the software, the designer follows three 

steps. First, simply draw a line pattern, then click 

the mouse. Next, adjust the spacing between a 

repeating pattern of these lines, then click the 

mouse. Finally, adjust the line width and coloring. 

Upon clicking the mouse after this final stage, the 

postscript file is rendered and ready to be printed.

Images of skirt patterns 

generated by Scribble, 2002.
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When designing Scribble, I imagined being able to use technology to 

design and build new clothes each morning before going to school or 

work. I envy the idea of having my entire wardrobe hand-crafted to fit 

my body perfectly, but do not want to sacrifice the ease and simplicity 

of going to a store and purchasing an item directly off the rack. Scribble 

toys with the idea of disposable clothing that comes and goes with 

each day.

Women in the early to mid 1900’s went to dressmakers for the hottest 

fashions of the day, a concept alien to most women and girls in 

today’s society. Instead, modern women rely on ready-to-wear clothing 

for a significant part (if not all) of their wardrobes. This changes 

the relationship women have with their clothing. Mass production 

revolutionized the fashion industry forever, but it also altered our 

mindset about the permanence and fluidity of our wardrobes. 

The Scribble technique creates a dual commentary on the fabrication 

of fashion garments. The speed and simplicity not only contrasts the 

carefully constructed dressmaker’s clothes, but it also contrasts the 

generic clothing we buy in our local chain store because of the wearer’s 

involvement in generating the design of the fabric. The design process 

behind the construction of ready-to-wear clothing is completely isolated 

from the customer.

Scribble is powerful because it lets users see and build garments of 

their own design in a quick, step-by-step process. The interaction, 

visualization, and customization of Scribble give the user a sense of 

ownership over what they create. The process is easy and clear. When 

thinking about the design of the Zuf system, I wanted the process to be 

easy and clear as well. The step-by-step approach works well for novice 

designers, and the minimal interface helps keep the focus and concepts 

of the project clear. Finally, the visualization of the system in the software 

simulation provides the user with that sense of ownership, involvement, 

and understanding that is so useful in the Scribble software.
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Nylon

The Nylon system is an integrated programming environment for interactive 

computer graphics and hardware controlled by a microprocessor (Aesthetics 

+ Computation Group, 2003). It was developed in the spring of 2002 by 

myself and my colleagues, Justin Manor and Simon Greenwold. 

The Nylon board was designed for prototyping hardware. It can be 

programmed directly from a computer’s serial port using the Nylon 

software. The basic syntax of the Nylon language is much like Java or 

C, however special linguistic constructions were designed to control the 

hardware input and output pins. The language is versatile because it lets the 

user elegantly control both the hardware and software components as an 

integrated and intertwined system.

Screenshot of the Nylon development environment, 2002.
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The Nylon programming environment is the development 

hub of the Nylon system. It brings together the written 

code, software simulations, and hardware module. Code 

can be written and interpreted in the environment, then 

run in a simulation mode. Once a user is satisfied with 

the behavior of their code, they can attach their hardware 

module to a serial port and upload their code with the click 

of a button. In addition, we developed a 10x14 LED display 

called Hotpants, that attaches to the Nylon hardware and 

runs computer graphics generated by the code.

The programming environment contains a text editing 

space to write code, a simulation space where the input 

and output pins of the board are simulated, and the ability 

to add and remove displays so that graphics code can 

be simulated on the computer screen as it would appear 

on a Hotpants display. Pausing, resuming, and debugging 

capabilties exist in the Nylon environment.

Working on Nylon was a great introduction to building 

an integrated system like Zuf. Many of the design 

decisions that went into Nylon were tested by a class 

of undergraduates who used Nylon for their assignments. 

Feedback from the students in regards to the language, 

the interface, and the hardware component proved to be 

invaluable when I set out to build Zuf. I was able to address 

mistakes made in Nylon when building the Zuf simulation, 

and when creating the Zuf interface.





Chapter Four

Zuf: A Fuzzy Control System

This chapter discusses the Zuf system in detail, first 

giving an overview of the system and its parts, then 

discussing the development process when using Zuf with 

a concurrent discussion of all components in detail. 

Finally, the chapter wraps up with a discussion of 

improvements for the system as a whole.

Zuf is a programming system for controlling small 

embedded devices and microcontrollers using fuzzy 

logic. It was designed for fashion designers interested 

in building computational garments, however the 

underlying concept and process is applicable to many 

fields of research and development.

Intelligent systems should be able to reason about 

their own knowledge.

Terry Winograd, Fernando Flores
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System Overview

Zuf is a web-based application which runs on a remote 

server rather than locally on a designer’s machine, like most 

development environments. Designers access the system by 

visiting the website from a remote location. To write a 

fuzzy program, users must first step through a series of 

web pages, where they are prompted to specify and name 

input and output modules attached to the device they are 

controlling. Next, they specify a bank of “If... then...“ rules 

that controls the fuzzy-logic reasoning. Finally, a software 

simulation of the fuzzy code generated by Zuf illustrates 

exactly how the device will behave given the rules the user 

has established. 

At any point during the process, users can step back 

and change parameters, names, or rules. 

For instance, if it is found during the 

simulation that the device is behaving 

differently than anticipated, a user is 

free to alter the behavior in several 

ways. The user might delete rules 

which were already established. The user 

might also add new rules or change existing 

rules. Perhaps the user would find that one 

A graphical model of the Zuf system, its 

components, and their interactions.
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of the inputs is irrelevant, and can therefore be removed from the 

design. Zuf lets them play with the code in a trial-by-error fashion. 

The user can see directly how changes affect behavior, and in the end 

the programmer develops a more intuitive sense about the relationship 

between hardware, software, and human interaction.

There are three main components to the Zuf system. First is the 

client, or end-user. The client accesses Zuf from a remote location in 

order to build the program for the device. The client should have in 

possession easy accessibility to the second component of the system, 

the embeddable device. For the first iteration of Zuf, the embeddable 

device is required to be the BL2000 microprocessor module from Rabbit 

Semiconductors, otherwise known as the Wildcat. Future iterations will 

allow for the client to choose between a Wildcat, PIC microprocessor, 

BasicX module, or other popular system. The main constraint on a 

client’s choice of device is that the device needs the capability to 

communicate via TCP/IP in order to download information from the 

Zuf web server. 

The third component of the Zuf system is the web server, which houses 

the development environment and software simulation. The interface 

for the development environment is powered by Java Server Pages (JSP). 

It consists of a JSP engine which dynamically generates HTML pages 

with each request from the client’s computer. The interface collects 

information from the client about device peripherals and behavior, 

storing this information remotely on the server. The JSP pages modify 

the interface dynamically to reflect the client’s input as they step 

through the programming process. 
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A screenshot of the first step in the Zuf system, 

entering information about the input devices. 

Development Process

There are three steps to this process, which include defining the inputs and 

their states, defining the outputs and their states, and establishing a bank 

of rules. The inputs and outputs are established by providing a name and 

linguistic modifier for the low state, middle (neutral) state, and the high 

state. Although the fuzzy calculations are done on a continuous spectrum 

between the high and low states, only three modifiers are provided which 

approximate what range the component is in at any given time.
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The user enters all of this data into two sequential web 

forms. Then at the third step, the rules are generated 

through an interface that dynamically regenerates English 

sentences describing the rules, depending on which input, 

output, or states are selected. This is done through radio 

buttons. A running list of the rule bank is updated at 

the bottom of the page. There is a check box next to 

each rule that lets the user remove a rule if so desired. 

Repeated rules or conflicting rules are allowable in this 

system, and will not break the functionality of a device. 

However users might want to delete rules because they 

affect the behavior in undesirable ways. All computation 

which happens during these steps is processed remotely 

on the Zuf server. The software simulation, however, is 

run locally on the client’s computer and consists of a Java 

applet generated during the last stage of the interface. 

The JSP engine which drives the development environment 

ensures that the most recent information gets passed from 

the Zuf server during simulation. 

A screenshot of the second 

step in the Zuf system, 

entering information about 

the output devices. 
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While running, there are two modes in the simulation, a straight-forward 

visualization of the embedded device and a graphical illustration in the 

context of computational garment design. In both modes, the client has 

the ability to manipulate simulated input values and view how the output 

modules are affected by input changes and the fuzzy computation. Located 

on the screen during both modes is one slider per input module. The 

client manipulates the value of an input by dragging the mouse on 

the corresponding slider. In the first mode, dynamic graphs of the fuzzy 

membership functions and the changing output values are drawn on the 

screen in real-time. Toggling to the second mode lets the client watch 

illustrations of motors, lights, or other output modules as they change state 

in response to the changing inputs.

A screenshot of the third step 

in the Zuf system, establishing a 

bank of rules.
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In the first mode of the simulation, the users view a collection of dynamic 

graphs to monitor if their device behaves reasonably with the rules they 

generated. First, there are graphs of the voltage level that appears on the 

output pins. The graphs visually originate from a picture of the device and 

scroll dynamically across the screen. The graph maps to the output value at 

any given time during execution. It is directly affected by the input values 

and are the result of processing through the fuzzy logic algorithm. The 

client can watch the graph change over time and it quickly becomes clear 

whether the device is behaving in a reasonable manner.

The second type of dynamic graph that appears in the first mode is a 

mapping of the fuzzy membership functions and their center of mass. Each 

output has a final membership function which determines to what amount 

the output should belong in the fuzzy set. The value read on the output pin 

is generated by taking the center of mass of the final membership function 

as it changes. These graphs help the user develop an understanding of why 

they see the values they see and how the fuzzy calculations are affected 

by the input values.

A close-up screenshot of graphs during the 

device simulation.
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In the second visualization mode of the simulation, the client sees the 

system in an abstract, general form. This mode is designed specifically 

for the context of fashion design, however one can easily imagine the 

illustration being tailored to many industries or applications. In this case, 

each output has an image of itself drawn in relation to the body or as 

an integrated feature on a garment. Each garment hangs from a hanger 

on a bar which spans the screen. The idea is to give the feel of stepping 

into someone’s closet, where all the clothes are dynamic and reactive. The 

technology is so embedded into the scene that it is ubiquitous and thus 

renders itself both invisible and irrelevant to the idea behind the garment 

being constructed.

Screenshots of the fourth step in the Zuf system, 

simulating the device behavior. 
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In both modes, each input is clearly labeled by 

name and state. For instance, lets say a client 

defines an input called “Microphone” which has 

the low state of “Quiet”, the neutral state of 

“Hum” and the High State of “Blaring”. As the 

value of the microphone input slider is adjusted 

in the simulation, the client is automatically 

informed which state the microphone is in rather 

than regurgitating a numerical value. Numerical 

values of the inputs can be arbitrary and thus 

meaningless to the user’s understanding of the 

code. Numerical values are tuned specifically for 

the embedded device and input module and vary 

from system to system. By knowing linguistically 

which state the input is in, the client obtains a 

more rich understanding of the device behavior 

and intuitively how it is affected by the rules and 

sensory inputs. The user’s understanding becomes 

qualitative rather than quantitative.

A closer screenshot of the simulation mode in the Zuf system.
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Once the designers are 

happy with the behavior 

they designed through the 

Zuf programming system, 

they are ready to load the code onto their embeddable device. If it is their 

first time using the device, they must put a bootloader program on the 

device before programming it. This program allows the device to easily load 

and run fuzzy programs designed using Zuf. The devices discussed for use 

with this research are commercially available microcontrollers, and therefore 

not ready to load Zuf programs off the shelf. The bootloader only needs 

to be put on the device the first time a designer uses it. From that point 

out, they can program their controller by powering it up while connected to 

the Internet over TCP/IP. One input pin is designated on each device to be 

a momentary “Program” switch. When pressed, the device queries the Zuf 

server. If code exists for the device then it loads and runs this new program. 

Otherwise, it continues to execute the code currently saved in memory.

An ideal solution to the bootloader problem would be to design Zuf 

hardware which has the available features of commercial microcontrollers, 

comes ready to load and run Zuf code, and is inexpensive. Until such 

hardware exists, the bootloader is a non-ideal solution to the problem. 

Loading the bootloader will require that the designer use the development 

environment which comes with their devices to open and load the 

bootloader code. This unfortunately means that the designer will have to go 

through the steps of installing the IDE and dealing with the programming 

cables and other hassles that come with programming microcontrollers. 

A screenshot of another mode 

during the fourth step in the 

Zuf system, simulating the 

device behavior. 
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The bootloader is written and available for the devices ahead of time so 

that the designer does not have to program the bootloader on their own. 

An advantage to using the bootloader program is that experienced users 

are now given the ability to modify parameters in the bootloader code that 

fine tunes their device behavior, such as changing the pins each input and 

output are connected to or adding functionality for more complicated input 

sensors and output devices. After customizing the bootloader, experienced 

users only needs to load it once, then they can run Zuf code easily using 

the TCP/IP connection. This cuts down on compile and load time, and 

makes the programming process smoother, faster, and less complicated. The 

reasoning process of the device can be changed easily and quickly without 

having to reload the driving algorithms for the hardware.

Improvements to the System

The basic structure of the Zuf program was completed for this thesis. 

However there are many areas where the system can be improved, by 

adding more functionality and usefulness to the tool. These areas are listed 

below.

. Develop hardware modules that plug into the devices 

easily, removing the need to build interface circuitry between 

hardware and input/output component. This would be a 

starting point for hardware development, providing a toolkit 

of existing circuits for the designers to use. This would include 

both input sensors and output devices. For example, to attach 

a DC motor to the Wildcat, a motor driver chip is required to 

source the correct amount of current without cutting power 

from the processor.
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. Create a robust back-end for the server which lets users log in, 

develop a variety of projects, and have access to all variations of their 

code. This would require implementing security features in the Zuf 

web server to control who has access to information saved on the 

server. It would also require setting up a database for storing and 

retrieving code, such as the open source database, MySQL.

. Create a community for Zuf users to share code or expand 

components and functionality of the system. This would require 

implementing a shared space on the website for discussion boards 

and galleries of work. This could continue to be implemented using 

Java Server Pages.

. Improve the software simulation so that designers can build their 

own visual representations of the outputs, or view both modes 

simultaneously.

. Handle the identification of devices more elegantly. Move 

identification away from static IP address identifiers. Implement a 

system to authenticate identity. One way to implement this would 

require users to register their device when they begin development 

in order for the Zuf server to assign a unique identifier to it. The 

identifier could then be included in the bootloader code. Another 

implementation would allow the User to choose an identifier for their 

device that is approved by the Zuf server to avoid duplicates.

. Implement DHCP capabilities for the devices.

. Implement the system for use with many devices and 

microprocessors, moving from just the Wildcat to devices such as PIC, 

BasicX, etc. This would require writing the necessary driving code for 

each device that allows them to run the fuzzy logic algorithms. It 

would also require adding TCP/IP circuitry to those devices that do 

not come equipped with Internet capabilities.
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. Allow for more complicated rules in the fuzzy algorithm. 

This would require updating the software interface to 

include rules relating multiple devices in “If... and..., then...” 

statements. It would also require updating the driving code 

on the devices to handle these rules.

. Allow for tweaking membership functions and other 

components in the fuzzy code, such as moving from the min-

max centroid calculations to other methods.

Each of these improvements would add more functionality to the 

tool without changing the basic concept or goals of the Zuf system. 

Certainly other improvements could be made to the system that 

are not listed above. When designing a tool, it is important to get 

feedback and information from people who would use the it. This 

enables the designer to create a system that is robust and complete 

and goes beyond the expectation of the User.





Chapter Five

Application & Analysis

In order to evaluate this software as a useful tool for 

designers, I first had two non-technical adult professionals 

use the software to evaluate the interface and conceptual 

grounding of the system. I wanted to evaluate Zuf’s 

ability as an educational tool and to evoke inspiration 

and computational literacy. Second, I used the software 

to develop a computational garment of my own in 

order to test the feasibility of building projects with 

the Zuf system. Finally, I worked with a class of 

design students to refine the needs and goals of such 

a system for fashion designers, and to analyze the 

usefulness and need for such a tool for their work.

The bicycle without a rider balances perfectly well. 
With a novice rider, it will fall. This is because the 
novice has the wrong intuitions about balancing and 
freezes the position of the bicycle so that its own 
corrective mechanism cannot work freely. 

Thus learning to ride does not mean learning to 
balance, it means learning not to unbalance, learning 
not to interfere. 

Seymour Papert

“MindStorms: Children, Computers, and Powerful Ideas” 
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Powerful Ideas and Computational Literacy

Many adults get anxious and nervous when confronted with the idea 

of programming or getting inside electronic devices to learn about and 

control their behavior. Through my experience teaching workshops on 

computational design and also showing my own parents and siblings 

the work I do as a masters student at the Media Laboratory, I have 

seen that adults can get excited about programming when someone is 

with them to hold their hand and explain what is going on. However 

several people have admitted that they would not attempt such projects 

on their own. They recognize the power of computation and their 

dependency on computational objects, but the infrastructure of such 

devices is otherworldly. The “guts” of their machines occupy a space they 

dare not tread. This realization became important to me as I set out to 

design the Zuf system and to refine my ideas about computational garment 

design. How could these garments aim to inspire them to learn more about 

computation? How could a system like Zuf and a fuzzy logic approach to 

programming microcontrollers and embedded devices inspire them to get 

their hands dirty and build projects of their own?
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To evaluate the ability of the Zuf system to stimulate powerful ideas and 

develop computational literacy, I tested the system with two non-technical 

adults. The adults, Heather Casey and Laura Davis (whose names have been 

changed), were able to discuss with me the ability of Zuf to evoke interest, 

creativity, and ways to conceptualize ideas about computation. During this 

stage, I was not concerned with the literal application of Zuf to garment 

design, but rather its ability to reach out to adults, in particular adults 

that have never programmed before and do not consider computers to 

be integral to their design or work process. I wanted to know whether 

Zuf helped users conceptualize the functionality of hardware devices and 

programming languages. Did it generate new ways of thinking they 

hadn’t experienced before? The fuzzy process does not follow conventional 

“accepted” methods of control and design, and so I wondered what it 

meant in regards to its usability, its robustness, and its rigor.

During this stage, I also wondered how adults felt emotionally when 

approached with the task of writing a computer program. Did Zuf help to 

relieve this anxiety? Heather and Laura were chosen because they would 

be impartial to the intent of the system. Neither of these women have 

programmed a microcontroller before. 

According to Sherry Turkle, in her article entitled “Seeing Through 

Computers: Education in a Culture of Simulation,” 

Ideas about computer literacy have changed, and it is no longer 

clear what we need to know or should know in order to 

become masters of our technology (Turkle, 1996). 

Heather and Laura both use computers frequently, but their perceptions 

of the computer does not include the complex algorithms, logic gates, 

transistors, or binary machine code that enables the computers to run. 

Heather and Laura use the machines without understanding how they 

work underneath the surface. Concepts used in programming or hardware 

design, such as iteration or the execution of algorithms, are foreign to 

them, as they are to many adults. 
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The first of the women, Heather Casey, is a social worker in Boston. She has 

a bachelors and a masters degrees in social work, and has worked for the 

last two years at an early intervention program located in one of the poorer 

neighborhoods of Boston. Her job consists of working with children who are 

diagnosed with developmental delays and their families. When Heather has 

the time, she enjoys engaging in projects like sewing and knitting. Computers 

are not a prominent component in Heather’s daily activities, however she 

owns a desktop computer which resides at home. She uses the computer 

several times a week, primarily for checking email, shopping, and visiting 

websites on the Internet. Heather used to use her computer frequently while 

still in school, primarily to write papers and create reports for her classes 

and research. At Heather’s agency she shares a computer with several other 

colleagues. She usually does not have time to use the machine at work, unless 

it involves obtaining paperwork or conducting research for a client in need of 

housing, schooling, or other social services.

The second woman, Laura Davis, is a post-doctoral researcher at a medical 

research facility in downtown Boston. Laura moved to Boston from England 

just over a year ago. In the spring of 2002, she travelled back to England 

to defend her dissertation and finish her doctorate. When asked if she 

used computers and email to help exchange revisions of her work with her 

committee overseas, she said no. Before she left England, her committee 

members supplied her with an outline of what they expected of her work, and 

this outline became her primary guideline while she worked independently.

As a biological researcher, Laura spends a lot of time at her lab growing and 

working with cells. The lab is equipped with digital cameras designed for 

use in conjunction with the microscopes and other high-precision instruments. 

Laura recently bought herself a laptop so that she could complete many 

of the tasks required of her research, such as writing papers, putting 

together presentations, and analyzing data. Laura primarily uses her computer 

for word processing, spreadsheets, checking email, and managing her 

personal finances. In addition, she uses digital photography to record the 

developmental stages of her cells, so Laura is familiar with paint and imaging 

programs, like Adobe Photoshop and the ones included with the cameras.
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Heather, Laura, and many adults learn to understand their computer 

through exploration and interaction. Some adults enjoy reading manuals to 

learn how to use a computer program. Others, like Laura, operate on a 

need-only basis. Laura learns about the functionality of her machine only as 

she stumbles upon new tasks she must accomplish with it. Despite using 

a computer at work or at home, neither Laura nor Heather think about 

their machine as a calculated and methodical robot. They do not visualize 

its behavior in terms of data flow mapped by procedures, algorithms, and 

variables. They are not exposed to the ordered structure, the synchronized 

gates, or verbose chunks of code that lie within. It’s not that they are 

incapable of knowing this, they just don’t have the need, or else they are 

scared to discover it for themselves. Heather and Laura each repeatedly 

told me, “I don’t know anything about computers” despite using them 

frequently and owning personal machines. 

Their comments brought to light an important perception that must 

be considered when designing systems like Zuf. How are such systems 

and methods capable of expanding a user’s bank of knowledge as well 

as broadening their sense of power and understanding? When does 

knowledge about the process of computation become necessary and useful 

to the casual computer user? What would entice an adult to learn more 

about technology or to want to build projects using programmable devices 

and computational elements? It is not important for them to know how 

their computers work in order to use them effectively. When would they 

find it useful to understand computational concepts?

Each of these women had successful academic careers and slightly higher 

than average mathematics educations. Heather does not use math or 

science directly in her social work career, but she took college level 

Calculus and considered herself a strong math student while getting her 

undergraduate degree. Laura is a science researcher and uses math both 

directly and indirectly in her work. 
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Heather took a computer class in 1988 at her middle 

school in Florida, when she was in the eighth grade. 

In the class, they were given the task of executing 

rudimentary programs in what, we think, was the BASIC 

language, although this is unclear. She remembers the 

task as “making colored lines go across the screen” and 

she had difficulty remembering any other details about 

what they did. When asked about this experience, Heather 

was uncertain if the class “counted” as programming 

experience. She was hesitant to bring it up or describe it to 

me in detail because it occurred so long ago and existed as 

a vague memory in her mind. She remembered that it was 

fun, but didn’t feel that it changed they way she thinks as 

an adult or that the work was useful in her current life.

Aside from Heather’s middle school computer class, 

neither of the women had experience programming either 

software or hardware, nor did they use computers for 

tasks outside email, commerce, and the others previously 

listed. Laura’s new laptop is still missing a few programs 

she’d like to use for her work. We started to discuss 

what other software programs she wanted to have on the 

computer, what she would use them for, and how she 

would install the software on her machine. Laura said she 

had a friend who could get the programs and install them 

for her. Through her exasperated facial expressions, it was 

apparent that installing software was an alien process to 

Laura, one in which she is very hesitant to get involved 

in. Laura told me that she thinks installations are probably 

quite easy once someone knows what they’re doing. 

She admits she could probably install software herself if 

someone showed her how to do it. But she was also 

adamant that she didn’t want or didn’t need to learn. The 

task required a level of computer literacy that she was not 

willing to reach. She had friends she trusted to do it for 

her and do it correctly. 
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After working with Zuf, Heather and Laura were both surprised that they 

had actually programmed on their own. Heather felt that the format was 

more natural than what she understood programming environments to be 

like, and so it became easier to comprehend what she was doing. She 

thought that more people would be able to use it because of the ease. 

She liked that it didn’t crash or take a lot of time to use. Once she worked 

through some initial confusion, she really started to have fun and wanted to 

add more components and behaviors to the device. Through the simulation 

and the rules she established, Heather really started to understand how 

the different components related to the rules she established. She became 

interested in the types of sensors and inputs available for programmable 

devices. She asked if there were temperature sensors, or whether it was 

possible to determine how near other objects were. She thought it would 

be fun to make stuff she could use with the kids at her job, so they could 

understand cause and effect. 

 

I’d like to make it so that when I talk really loud a car moves 

around, and the kids would know if I’m angry or not,” she said. 

“I think it would be really helpful to teach them about cause 

and effect. They like lights and noises and it would be cool to 

make stuff for them to play with and learn (Casey, 2002).

Zuf seemed to open a floodgate in Heather’s head and new, creative ideas 

came bubbling forth. Now that she felt empowered and capable of using 

a microcontroller to build real projects, she had new freedom to plan and 

dream about what these projects might be. On the floor in Heather’s room, 

I noticed that she had an array of holiday ornaments that she was sewing as 

gifts for her colleagues at work. I prodded her to see if she’d be interested 

in building computational stuff for her colleagues, and she laughed at the 

idea of making squishy candy cane ornaments that blinked or played carols. 

She said she would definitely be interested in learning how to use motors 

and lights because she didn’t know how to use them. 
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Laura, on the other hand, seemed very hesitant to call what she had 

done “programming,” even though she’d set up the inputs and outputs 

and defined the rules herself. She played with the simulation briefly and 

saw the relationship between input and output values as the system 

processed the rules. She was not interested in looking at the output 

graphs generated by the fuzzy logic calculations, and didn’t care to ask 

questions about what they meant or how they related to her car. The 

entire system didn’t fit with her model of programming as a complicated 

and impossible task, and so she resisted calling it programming. She was 

sure of her role as someone who “knows very little about programming” 

and didn’t seem to have a desire to explore outside that box, or to admit 

that she actually had. 

Building computational objects seems to have little relation to the work 

Laura does at her lab or home. Therefore she didn’t care to brainstorm 

about other uses for the system outside the task I laid out for her. 

It would be fun to let Laura play with programs like MicroWorlds or 

StarLogo, programs with more relation to her work as a biologist. The 

physicality of the work that Zuf lets users build does not illicit inspiration 

or evoke new ideas about computation in Laura. My guess, however, is 

that programs designed for simulating distributed systems and cellular 

bodies would be received very differently. 

One thing Laura appreciated was that the system was in a format that 

she could access easily. She finds that her favorite websites are organized 

clearly and contain links that work and follow through the site. 

After discussing with Heather and Laura their experience with Zuf and 

the things they learned from the program, it is clear that adults need to 

see constructive, direct uses for computational systems in their careers 

and daily activities in order for them to get excited about and interested 

in using educational tools. Alan Kay has previously expressed these same 

ideas about children, 
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What really seems to be the case is that children are willing 

to go to any lengths to learn very difficult things and endure 

almost an endless succession of “failures” in the process if they 

have a sense that the activity is an integral part of their culture 

(Kay, 1995).

The strength of Kay’s idea should not be limited to young kids. It resonates 

throughout my work with Heather, Laura, and I imagine with other 

adults. My work with Heather and Laura during the early development 

stages of Zuf reaffirmed that it has the ability to empower designers 

interested in building computational garments. It is specifically designed for 

their work, and therefore it docks into their current interests, needs, and 

initial skill level.

After spending time with Heather and Laura, I was curious about using 

Zuf with adults who have high levels of programming experience and a 

very fluid and deep understanding of computers, but who do not use 

hardware or have an equivalent amount of experience working in hardware 

as they do in software. Therefore I engaged in an informal discussion over 

coffee with two graduate students who are working on thesis projects 

that involve many hours of programming and computer time. Stan Port 

and Jamie Wood studied computer science and electrical engineering as 

undergraduates at the Massachusetts Institute of Technology. Stan 

is currently working on his master’s degree at the MIT Media Laboratory, 

and Jamie is working on her M.Eng. degree with professors at the 

Whitehead institute. 

Neither Stan nor Jamie feel comfortable using hardware, although they 

have different opinions of hardware as a medium. Stan loves programming 

in software because of the ease of implementation, the relatively free cost, 

and the speed at which he can develop complex programs. He has forayed 

into hardware on occasion, but found it extremely frustrating to pour over 

catalogs, scratch his head about broken components, and repetitively build 

the same circuit over and over. He had no idea how to go about starting a 

hardware project without the help of his colleagues. He explained it to me 

as an “indescribable phobia of hardware.”
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Jamie, on the other hand, has a desire to use hardware because she finds 

it aesthetically beautiful and much more powerful than the screen-based 

programs she used to create in software. She likes the idea of being able 

to work in a three-dimensional medium rather than building programs that 

can so easily get ignored or lost. However Jamie hasn’t the faintest idea 

where to start such a project. She explained that, if given a circuit diagram, 

she can build it perfectly because she knows all the components and how to 

put them together, but she wouldn’t have any notion of what the circuit did 

on her own. “I can follow the directions if someone gives them to me, but 

I want to be able to just put things together and know they’ll work. I want 

big, tangible pieces that I can just play with.” Jamie expressed a need to 

separate hardware from the personal computer altogether. 

Speaking to these two helped clarify where the next stages of the Zuf 

development needed to focus. Heather and Laura helped me recognize 

that Zuf is fairly successful at making the software and programming 

component of project development open and accessible to people with 

no programming background. The fuzzy logic calculations successfully 

implemented control code that allowed users to program using natural 

language rather than procedural languages. It created an abstraction that 

was high enough to be useful to beginners, and transparent enough to 

encourage questions and curiosity about how things behave. Although 

Zuf is not the best example of a tool that will excite all users, it is a 

good tool for people like Heather to start thinking about and creating 

computational projects. The next step is to create open and accessible 

modules for designers to build hardware circuitry, to explore electrical 

engineering concepts, and to feel like they can grasp how their projects 

behave on many levels beneath the surface. 
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Using Zuf to Build a Garment

In order to test the Zuf system through an entire design cycle, I used it 

to develop another garment, named Twirl. The idea behind Twirl was to 

have a skirt with dynamic components that respond to the posture of the 

person wearing the skirt. A resistive bend sensor was sewn into the back 

seam vertically along the rear of the skirt in order to detect if the wearer 

is standing, sitting, or partially bent over. Two five volt DC motors were 

embedded into the lower regions of the skirt and control movement of 

floppy, delicate adornments. The adornments can spin quickly, slowly, or not 

at all, depending on the input from the sensor and on the fuzzy algorithm 

currently running on the skirt’s microcontroller.

A pocket along the right quadricep houses 

the Wildcat microcontroller and the interface 

circuitry for the DC motors. The pocket Velcros 

on three sides and holds the microcontroller 

firmly in place. It also makes it easy to 

access the device when new code needs to 

be uploaded through the TCP/IP connection, 

because the entire microcontroller does not 

need to be removed. Instead, a small section 

approximately one inch in length is a sufficient 

opening to let the cable through. The input 

sensor and output motors are connected to 

the microcontroller through small wires that 

are stitched through the skirt. 

The Twirl project, which was built 

using the Zuf system, 2003.
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The development cycle for Twirl was very simple because of the Zuf system, 

and the hardware implementation became secondary to the aesthetic 

design and garment construction. Initially the skirt was designed in concept 

through sketches and scenarios, and therefore the appropriate input and 

output technology could be chosen for the skirt. The actual skirt was 

built with the devices embedded into it without ever testing the hardware 

circuitry or needing to write code. Because of the nature of the Zuf system, 

I was confident that the hardware development would be smooth and 

painless, and I proved myself correct. Without the Zuf system, development  

would have required using the Dynamic C programming language and 

environment, writing a procedural program that reads the input values, 

calibrates and interprets them, checks for all cases dictating how the output 

should respond, then sends the appropriate output value to the pin. The 

process would have required learning the correct syntax, function calls, pin 

declarations, and other specifics, plus multiple compile cycles before getting 

to load and test the code on the hardware device.

Once the skirt had completed construction, I downloaded the bootloader 

onto the Wildcat, then attached the inputs and outputs to it and placed 

it in the pocket. At this point I was free to toy with many variations 

of code linking the sensor readings to the output behavior. The Zuf 

interface made this behavior easy to visualize and quick to modify. Writing 

new code could be done without taking an excessive amount of time. 

After several iterations of code, it quickly became clear what set of rules 

were most effective for my 

desires for the garment. 

Tweaking the interaction 

with the input sensors and 

establishing the intended 

behavior from the output 

devices was accomplished 

without any headache or 

long iteration process.

A close view of a Twirl motorized 

component, 2003.
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Four steps for programming Twirl 

using the Zuf system:

1. Declaring the inputs (top)

2. Declaring the outputs (second from top)

3. Establishing the rules (third from top)

4. Simulating the behavior (left)
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In addition, the Zuf system became a good platform for working on 

the project with other people because everyone could see clearly what 

changes were made and how they were made, and could intelligently 

discuss all the different design paths for the garment. The interface 

really helped the ideas of the project come through, and made the code 

intuitive for everyone to understand and think about.

There were a few weaknesses that I discovered during this development 

process. First, the interfacing between hardware and the microcontroller 

was a serious breakdown in the system. Motors cannot be directly 

connected to a microcontroller because they draw too much current and 

cause the microcontroller to fail. Therefore I had to take extra time to 

develop interfacing hardware with a motor driver chip. The system needs 

either “black box” modules that connect without extra circuitry or some 

method for constructing hardware circuits. 

In addition, having programmed entirely with procedural methods, 

making the shift to fuzzy logic control proved to be difficult. The fuzzy 

process Zuf uses is a much higher-level approach to programming, and 

with that comes a sense of a loss of control and of the discrete 

understanding of the code. It became a matter of how much I trusted my 

program to work and how much impact I had on its performance.
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Working with Design Students

The final analysis of the Zuf system came when I visited and worked with a class 

of fashion design students at Parson’s School of Design in New York City. The class, 

entitled “Fashionable Technology,” spans two semesters and was taught by Sabine 

Seymore. The course website describes the class as investigating “the relationship 

between wearable technology, fashion, and design. An interdisciplinary design 

process is applied to guide the research, concept development, and prototyping.” 

“Fashiontech,” as the class is referred to, explores both the theory and practicality 

of developing computational garments, integrating technology into fashion design. 

Each year the class focuses on a specific topic or context area. Snowboarding was 

the theme of the class I came to work with. The students were developing jackets 

for snowboarders to wear during their sport. The goal for the final jacket was 

to integrate wireless communication, global positioning (GPS), and biosensing to 

provide emergency location, slope information, and peer-to-peer communication 

to the wearer of the jacket.

Design of the inner layer of 

the fashiontech jacket. Document 

courtesy of Sabine Seymour, 2003.
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The average age for the class was 28 years old, and all of them had 

undergraduate degrees from accredited institutions. Half the class had 

received bachelors of fine arts, and the other half had already received 

master’s degrees in topics ranging from business to arts. 

During the fall semester, I visited the Fashiontech class to give a lecture 

about embedded computing in the context of garment design. This visit 

was the first stage of my evaluation and research, and it served as a means 

for me to talk with the students and get a feel for the skills they did and 

did not have. Through classroom discussion and observation following my 

lecture, I gathered the following information about a typical fashion design 

student.

1. Everyone knew how to use a computer for checking email, 

surfing the web, and using word processing programs.

2. Some of the students had created visual design projects 

on the computer using applications like Adobe Photoshop or  

Macromedia’s Flash.

3. Many of the students had never done any sort of computer 

programming or computational design projects. Of those who 

had, most had written short action scripts or HTML code, but 

not worked with hardware.

4. All students were extremely conceptual and visual in nature.

The students who had worked with Flash or written HTML code and Action 

scripts seemed to have a higher level of comfort and confidence when 

confronted with the idea of using microcontrollers and building circuitry. It 

was good to meet with and talk to all the students during this visit because 

I was able to gauge their experience level and interest in computational 

projects. I was able to use this understanding as I set out to design the 

Zuf system and interface.
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During the spring semester, I revisited the Fashionable Technology class in 

order to assist them with the construction of their jacket, and to provide a 

hands-on workshop using my software to evaluate its usability and intent. 

The class had shrunk in size because conflicting schedules forced some of 

the students to drop the course, however the students that remained were 

very enthusiastic and excited about the class, and about my visit. 

The collection of jackets they’d conceptualized the semester before had 

been whittled down to one concrete design, and the class was currently 

in the process of building presentations, specifications, and detailed 

documentation of the design and the technology they hoped to incorporate 

into the jacket. It was interesting to see the process by which they 

came upon their design. They have a fresh outlook on technology, its 

implementations, and its applications. They attack their projects with a very 

top-down approach, as opposed to myself and most of the students I work 

with at MIT, who attack their projects from the bottom up. 

Design of the outer layer of 

the fashiontech jacket. Document 

courtesy of Sabine Seymour, 2003.
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Many engineering students often have very technically strong projects 

but the concepts are unclear or the final form of the work is poorly 

designed and constructed. The students at Parson’s, in contrast, have 

very strong conceptual work. The ideas and intentions are extremely 

clear and illustrated well, the design of the forms are immaculate, but 

the implementation is a nearly impossible task, too daunting to even 

know where to start. 

In contrast, my usual process when building a computational garment 

is to find interesting technology and build the garment around it, 

whereas the students at Parson’s would design a garment and concept, 

then force technology to fit into the design. For these designers, their 

approach makes sense because they come from a point of view in 

which they are unaware of the constraints technology can impose on a 

design. They operate under the assumption that whatever they choose 

to use will magically be able to work somehow. 

Unfortunately, many of the ideas they generated for the class were 

one of two extremes, either so fanciful that they weren’t grounded 

in reality in regards to existing technology, or they exactly mimicked 

currently existing garments that incorporate PDA’s, cellphones, and 

other portable devices, instead of challenging the ways in which the 

aesthetic and physical properties of garments can actually be altered 

by technology. 

The class was very good about accounting for such problems as 

placement on the body, protection against weather and elements, and 

other physical issues. Their technical weakness was apparent, however, 

because they did not design any of the interfacing circuitry that would 

“glue” their components together and allow for the jacket to function 

as one system. After they presented their designs to me, one student 

looked up with inquiring eyes and very innocently asked, “Can this all 

work? Is this jacket possible?”
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The jacket they were designing was unfortunately not far 

enough along for us to do the hands-on workshop using 

my software, so I modified the evaluation to consist of 

a presentation of the work, an optional questionnaire, 

and a group discussion. During the presentation, I gave 

a working demo of the Zuf system, explained where I 

wanted to take it in the future. The questionnaire helped 

them provide concrete feedback and insight on the work. 

We also engaged in a meaningful discussion of the Zuf 

system and their challenge as designers in general.

The strongest observation I perceived from the class was 

that (understandably) their designs were directly influenced 

by their current skill set and the depth of their knowledge 

of technology. The did not know where to research, 

browse, or search for new technologies or new devices 

and components they’d never heard of before. Therefore 

the designs had a tendency to repeat traits from the 

designs of industry and currently marketed products. This 

seemed to be largely different from other work that I 

observed around the building. The student projects and 

design pieces that were displayed in the hallways and 

exhibition spaces at Parson’s were extremely cutting-edge 

and creative, pushing the envelope in design, illustration, 

and fashion. Was it the amount of theory they’d been 

taught that helped them break through in other domains? 

Was it the larger collection of existing work from which to 

draw inspiration that gave them more room to be unique 

and innovative, as opposed to the extremely small set of 

existing work in computational garment design? I became 

extremely curious about where and why this deviation 

occurred in the Fashionable Technology class.
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Because of the strong contrast between their vantage point on project development versus 

myself and other MIT students, I was able to get very refreshing and supportive feedback 

on the Zuf program. The students were genuinely interested in seeing the program and 

understanding how it works and should be used. My feeling is that this was because it 

was the first time someone turned to them and said “I understand your challenge and 

frustrations, I want to help you, and I want to make this work for you.” The students have 

little to no experience working with electronics on such a low level, and they do not have the 

perspective or support of other students to help them get their footing.

The students explained that it would be helpful for a list of all existing input and output 

devices to be displayed on the interface or appear in a drop down menus on the pages 

where the parameters are named. My assumption was that users would want the freedom to 

write in or add their own naming conventions and devices, and so I left the text fields open 

and ambiguous. My mistake was that I assumed users would either know what technology 

exists that they can use, or else they would know where to research and find such items. The 

reality however is that neither of those assumptions are true and the users are most likely 

clueless about such things or else not confident enough in their knowledge. 

A map of the interface 

design and interaction with 

the fashiontech jacket. 

Document courtesy of Sabine 

Seymour, 2003.
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They really resonated with the second mode of the 

simulation. Being able to visualize the behavior was very 

meaningful and especially because it was so directly 

correlated with the fashion projects. They suggested that 

it would be nice for the users to be able to design and 

illustrate their own visualizations for each output so that 

the connections could be made that much stronger and 

more literal. This suggestion seemed especially nice to 

me because it got the designers more engaged in the 

work through a visual medium they understand. It got 

them thinking about each device, how it would behave, 

how to isolate its functionality in a design and how it 

should be placed on the body, then how all these things 

relate back to the code they’re building and behavior 

they’re specifying.

Some of the students had worked on projects for either 

work or school where they held the position of designer 

and worked with a team of engineers or technologists. 

They described these projects as often being frustrating 

or challenging because it was difficult to communicate 

their ideas to the engineers, and vice versa. The hardest 

part was making it very clear to the engineers what type 

of behavior and functionality they envisioned.

After seeing the Zuf interface, they were very excited 

because it had an obvious application to their work that 

I had not envisioned. A program like Zuf would be an 

ideal tool for them to use to communicate between 

designer and engineer. Zuf became, in their eyes, an 

interface between designer and technology - one that 

both sides could use and understand. The idea of using 

Zuf to clarify or express an idea, to present work, or to 

actually build a project was equally important to their 

work and their needs. 
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At first I was surprised to hear this because it had not crossed my mind as 

a useful application for the Zuf software. This use for Zuf clearly addresses 

a very basic communication problem that exists between designers and 

engineers. The software could act as a conduit between designer and 

engineer and still accomplish the task of being a tool that empowers 

designers, develops powerful ideas, and aids with their computational 

literacy. Even if a designer wasn’t going to build the technology for 

their work, playing with a program like Zuf still enabled them to work 

computationally and think about the kind of behavior and functionality their 

work would possess. 

In this sense, Zuf helps designers ground their work in reality and think 

strategically about the technology they want to use, how it relates to the 

garment, how it operates, and what it entails to use it. Their designs thus 

become stronger and more elegant, simpler and more clear. Instead of 

designing super-garments that can do anything and everything in concept 

but are technically impossible, they can now design unique, functional, and 

realistic garments that make it through the development process intact, 

retaining the true nature and goals of the work. Perhaps it would eventually 

excite them enough to want to dive in a little deeper and see if they can 

build the garments themselves.
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Technical barriers inhibit designers interested in 

building computational garments. In order for fashion 

designers to construct systems of clothing that react, 

collect information, or enrich our interactions with 

places and people, they will need a tool that helps 

them realize powerful computational concepts. The 

tool must lower the threshold and engage designers in 

meaningful ways during the design process. 

This research focused on the development of a 

powerful tool named Zuf, which was constructed for 

fashion designers interested in building computational 

garments. The Zuf system uses fuzzy logic reasoning 

to control embeddable devices. It contains a 

programming and simulation environment for 

designing and testing the devices, and utilizes the 

familiarity of websites as the programming interface. 

Its goal is to uproot the process of programming 

embeddable devices and turn it into a procedure that 

designers can use confidently and creatively.

Chapter Six

Conclusion
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Prior to building Zuf, I created many projects 

in computational design that helped outline 

some of the major features and design choices 

implemented in the Zuf system. These projects 

included several garments, a handbag, and a 

hardware programming system. The garments 

are situated within the axes of computational 

garment design; Dynamic / Static; Reactive / 

Disregarding; Disposable / Permanent; Mutating 

/ Preserving; Communicative / Withdrawn; 

Informative / Mysterious; Humorous / Solemn. 

Each garment was built to illustrate the different 

axes but also turned out to contribute a great 

deal towards the development of the Zuf system. 

Building the garments illustrated how Zuf would 

be used to create computational garments; what 

electrical components and control algorithms 

were needed to create the different behaviors, and 

what materials and embedded systems worked most 

effectively to make each axis clear. As a result, Zuf 

became a powerful tool that enables designers to 

elegantly develop projects which fall along any of 

the design axes by providing a solid foundation for 

embedded system control.

Dynamic

Static

Reactive

Disregarding

Informative

Mysterious

Mutating

Permanent
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When designers use the Zuf system, they write code by establishing 

simple, natural language rules instead of relying on procedural languages 

or complex algorithms. The rules are translated into fuzzy algorithms 

which run on the devices. The website and programming methodology lets 

designers hand-craft the hardware components of their garment designs. 

Zuf is a potential stepping stone for those interested in exploring more 

advanced projects.

The Zuf system was tested on two adults who have no programming 

experience. Then it was used to develop a computational garment. Finally it 

was shown to a class of fashion design students at a school in New York, 

where an in depth discussion was held regarding the Zuf system and the 

needs of designers interested in a new and unfamiliar field.

There are still many features in the Zuf system that should be refined 

and improved upon, however it is successful as a conceptual model 

and starting point. In addition to its application as a tool for building 

computational garments, Zuf has powerful uses as a tool for other domains. 

It provides a unique approach to controlling embedded devices through 

fuzzy logic reasoning and its web-based platform. Any application that 

requires hardware control, particularly those where an inexperienced adult 

will be working on the design, might find Zuf empowering and inspiring. No 

matter what type of project provides the context for using a tool like Zuf, 

the system can act as a stepping stone for the designer and evoke a deeper 

understanding and interest in hardware control.

Research in the field of wearable computing has moved technology 

and industry towards building lighter, more flexible, and more powerful 

computational devices that can be carried or worn on the body. As a result, 

fashion designers have started to think about embedding technology such 

as MP3 players and cellphones into clothing. Little work, however, has been 

done to change the nature of garment design by utilizing technology as 

an expressive medium. 
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Computational garments have the potential to become key 

actors in our lives. On one hand, the garments have infinite 

possibilities as expressive fashion elements. The kinetic, 

dynamic properties of computational garments means they 

are capable of exhibiting components of our identity in 

new and interesting ways. Clothing no longer has to be 

static or unresponsive. Rather, it should have the ability 

to transform itself, repair itself, mutate, adapt, and react. 

Instead of resting on our bodies like an external layer of 

dead skin, clothes can come alive.

Computational garments have a huge potential in 

the fields of medicine, military, rescue operations, 

business, education, performance, athletics and more. 

Computational garments have the computing power to 

collect, store, and share information. The human body acts 

as a mobile, dynamic canvas upon which to display and 

process this information. The visibility and interactivity of 

the human form makes it a unique interface - perfect for 

many industries, jobs, and applications.

Research needs to move out of the academic labs and into 

industry in order for computational garments to fall into 

the hands of the general public. Therefore a lot of work 

must be done to establish the framework and standards 

for building the garments in order to empower designers. 

Zuf is a first step in this direction. By building Zuf, I hope 

to encourage people on both sides of the story to think 

seriously about how to enrich the field of computational 

garment design so it can blossom and mature.
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