
The Ektara Architecture: The Right Framework for Context-Aware Wearable
and Ubiquitous Computing Applications.

Richard W. DeVaul, Alex “Sandy” Pentland
The Media Laboratory, Massachusetts Institute of Technology

frich,sandyg@media.mit.edu

Abstract

In this paper we describe the Ektara architecture, a dis-
tributed computing architecture for building context-aware
ubiquitous and wearable computing applications (UWC).
We begin by describing the critical requirements for de-
veloping real context-aware UWC applications and relate
these to a plausible user-centered scenario. We then present
the functional components of the Ektara architecture and
explain how they address the critical requirements. Exam-
ples of how these functional components interact to create
real applications are given, and we discuss our progress in
implementing a prototype system and several applications.

1. Introduction

In recent years, a wide range of context-aware wearable
and ubiquitous computing applications have been proposed,
ranging from location annotation systems to room-based
sensing systems to wearable computer-vision systems that
facilitate real-space live-action gaming[10, 14, 12, 13]. At
the same time, recent work integrating wearable and ubiqui-
tous computing shows the promise of combining these tech-
nologies to create applications which leverage the inherent
advantages of both[11]. Our review of this work has led us
to identify critical features of context-aware wearable and
ubiquitous computing systems and to propose a common
functional architecture for the development of real-world
applications in this domain. The critical, required features
include:

1. centralized management of competing demands for the
user’s attention

2. decentralized contextual resource discovery and allo-
cation

3. a uniform, decentralized mechanism for contextual in-
formation storage and retrieval

4. flexible context sensing and classification based on
heterogeneous sensors

5. strong cryptography for authentication, privacy, and
commerce

6. Open standards for the seamless integration of wear-
able and ubiquitous computing resources

In addition, we strongly believe in a design philosophy
which puts the user and the user’s needs at the center of
the design process. We developed the Ektara architecture to
address the critical features and needs, and to make it easy
to build user-centered ubiquitous and wearable computing
(UWC) applications.

1.1. Scenario: Alice’s Day Off

In order to make a case for the Ektara architecture, we
must make a case for the requirements outlined above. We
begin with a scenario illustrating the use of UWC systems:

Alice, an architect, is relaxing on her day off. It is
a warm spring day, and she is looking forward to
an afternoon of recreation and running a few er-
rands. While she was sleeping, Alice’s UWC sys-
tem (her wearable and the computing resources in
her home) was taking care of the mundane tasks
of keeping track of Alice’s messages, scanning
the news and financial services, and managing the
climate control of her home. Since this is Alice’s
day off, her UWC system waits until she sits up
in bed to raise the lights in the bedroom and start
the coffee brewing in the kitchen.

As Alice gets up, her wearable, which is a translu-
cent plastic lozenge about the size of a deck of
cards, glows softly to let her know that there are
messages, but none are urgent. She leaves it on
the night-stand and enters the bathroom to take a
shower.



By the time Alice returns, the wearable is glowing
more brightly; her boyfriend called, and the UWC
has decided that this message is more important
than the others. Alice slips on some clothes,
slides the wearable onto her belt, and walks into
the kitchen. By now the coffee is ready, and as
Alice sits down at the table with her mug, the
kitchen’s wall display comes to life. It lists three
email messages by subject and one voice message
by sender (Alice’s boyfriend) which is at the top
of the list. The headlines of Alice’s personalized
news and financial reports are shown as lower-
priority items. Alice touches the wearable and
says “voice messages,” and gets up to fix break-
fast.

The room’s audio system plays Bob’s message as
Alice looks through the refrigerator. Bob is invit-
ing Alice to meet him at the park that afternoon.
Alice pours some cold cereal, notices that she is
low on soy milk, and walks into the living room.
As Alice sits down at the couch with her cereal,
the living room’s wall display comes to life with
the information that was previously on the kitchen
display. “Reminder,” Alice says. The wall display
changes to show a list of to-do items. “Next time
I’m near a grocery store, remind me to buy soy
milk.” A new reminder is added to the list. The
text reads: “Proximity reminder, location grocery
store, action message: buy soy milk — confirm?”
“Confirmed,” Alice says.

Later that day as Alice is walking to the park, she
runs into Charles, an old client of hers. After
talking for a little while, Alice’s wearable alerts
her that there is a reminder associated with this
situation by displaying an icon on her integrated
glasses display. Without pausing in the conversa-
tion, she touches the wearable to request the in-
formation. The text “swimming pool” appears in
place of the icon. “Oh,” Alice says, “Did you ever
resolve the dispute with your contractor about the
swimming pool?”

As Alice walks home that evening she passes
through Garibaldi Square, near a Wordsworth
store. One of Alice’s shopping applications no-
tices that Le Corbusier’s “Towards a New Archi-
tecture,” a book she is looking for, is listed as
being on sale in Wordsworth for a lower price
than it can be found on the net. She stops in the
store and picks up the book. While she is there
her wearable automatically discovers an available
wall display and she uses it to call up a list of other
books she is interested in to check the store’s

prices. Alice purchases her books by authorizing
her shopping agent to transfer cybercash funds to
the store, and walks out with a friendly wave to
the cashier.

Walking through Alice’s day, we learn that:

1. Centralized management of competing demands for
the user’s attention is critical for any real-world UWC
applications because ad-hoc management by individ-
ual applications doesn’t scale. Pasco notes that one of
the features that context-aware systems can provide is
contextual adaptation, i.e. adjusting the application’s
behavior to the user’s context[9]. However, requir-
ing Alice’s cell-phone application to know when she
does not want to be interrupted would mean requiring
all of Alice’s other messaging and reminder applica-
tions to know this as well (and they would still com-
pete with each other). The only feasible alternative is
a top-level attention management system analogous to
the window-management systems employed by con-
ventional GUIs.

2. Dynamic decentralized contextual resource discovery
and allocation enables Alice’s wearable to discover
and use the available resources in any environment,
whether it is her home or the bookstore. Kortuem
et al. describe a centralized mechanism for local re-
source discovery[7]. However, we believe that the con-
textual resource discovery process (also described by
Pasco[9]) must be dynamic and decentralized to match
the unpredictable and constantly changing demands
that users place on these resources. Decentralization
makes the contextual resource discovery process ro-
bust, scalable, flexible, and privacy preserving; Alice
can reveal as much or as little about herself as she
chooses in requesting access to Wordsworth’s UWC
system, and the store can then decide whether to grant
access on a case-by-case basis.

3. Strong cryptography for authentication, privacy and
commerce makes it possible for Alice to trust that
as she interacts with a wide range of other UWC re-
sources her personal information and financial transac-
tions will remain private. Rhodes et al. have noted the
security advantages wearable computing can provide
as a means of storing and controlling access to private
information[11]. However, if the wearable is unable to
transmit or receive this information securely over un-
trusted networks and unable to authenticate communi-
cations with remote hosts, users, and agents, it destroys
many of the promised rewards of the integrated wear-
able/ubiquitous computing environment.

4. A uniform, decentralized mechanism for contextual
information storage and retrieval greatly reduces the



number of services required to support a broad variety
of context-aware applications. This system must solve
three basic problems. First, it must be possible to asso-
ciated arbitrary documents with a well-structured con-
text description; the stick-e note system described by
Brown et al. (which provides a fairly general SGML
DTD-based context description and querying frame-
work) appears to solve this problem well. Second, it
must be possible to associate a well-constructed con-
text description with contextual information servers, so
that servers can operate within well-defined contextual
scopes. Third, it must be possible for applications to
discover servers which match a particular contextual
scope (which returns us to the distributed contextual
resource discovery problem).

5. Flexible context sensing and classification based on
heterogenous sensors enables a broader range of con-
text aware applications than any single sensor or clas-
sifier type can support. It has already been shown that
computer vision can be used to extract useful location
and action context from a wearable’s environment[1,
13]. By supporting this type of general-purpose sens-
ing, it is possible to extract a much wider range of con-
textual information from the user’s action and environ-
ment than can be obtained with specialized location
sensing; it is impossible for Alice’s system to recog-
nize “action contexts” such as the “talking to Charles”
context, without a flexible sensing and classification
system.

6. Open standards for the seamless integration of wear-
able and ubiquitous computing resources mean that
Alice knows her wearable will be able to talk to ubiq-
uitous computing resources everywhere she goes. Fur-
ther, Alice’s wearable can now be a minimalistic core
interacting with a range of on and off-body interfaces,
computational resources, and networked services.

2. The Ektara Architecture Components

We designed the Ektara architecture to address the needs
outlined above. In this section we describe the architec-
ture’s functional components and then examine how the
components would work together to make Alice’s scenario
a reality:

2.1. Open-Standards Distributed Computing Foun-
dation

The foundation of the Ektara architecture is an open-
standards based distributed computing environment. This
is less a component than a requirement for building the rest

of the system, but it is important enough to be mentioned
here.

2.2. Context-Aware Interaction Manager

The context-aware interaction manager (CAIM) pro-
vides a uniform framework for interaction between applica-
tions and the user. The primary goal of the CAIM is to min-
imize the demands on the user’s time and attention while
maximizing the relevance of the information provided. The
CAIM works to achieve this goal by taking into account
the HCI resources currently available to the user, important
contextual factors effecting the user’s ability to pay atten-
tion to the UWC system, and the actions of the user’s ap-
plications. Further, the criteria by which the CAIM makes
these decisions must be understandable and controllable
by the user; ideally the CAIM should implicitly learn the
user’s preferences over time yet still be able to provide the
user with an explicit description of its decision model. The
CAIM’s decision model becomes part of the user’s personal
profile which resides on the wearable and is always acces-
sible wherever she goes.

2.3. Dynamic Decentralized Resource Discovery

The dynamic decentralized resource discovery frame-
work allows UWC applications and services to find and use
resources that match semantic descriptions of functionality
and context. The foundation of this system is a protocol by
which a UWC component obtains networking services and
contacts a directory registration service. The UCW compo-
nent provides the registration service a semantic description
of itself and its capabilities, and any additional contextual
information it chooses to provide. The registration service
then makes further determinations about the resource’s con-
text and hands this information off to an appropriate contex-
tual information server (CIS). If this resource becomes un-
available, the registration service informs the CIS and the
registration information is removed.

2.4. Contextual Information Service

A stick-e notes like context framework for documents
is combined with the idea of a distinguished context for
servers and a distributed contextual resource discovery
mechanism to address the needs for a general-purpose dis-
tributed contextual information service (CIS). A distin-
guished context is a context template which specifies the
scope of a contextual message server. For instance, Alice’s
house runs a contextual message server with a distinguished
context matching the “Alice’s house” context. The distin-
guished context mechanism allows resource and personal



information to be stored and accessed where it is most rel-
evant and appropriate. Hence, the private information asso-
ciated with Alice’s home is stored on a contextual informa-
tion server having that location (Alice’s house) as its dis-
tinguished context. Likewise, personal information about
Alice herself “lives” on a server on Alice’s wearable which
has Alice’s identity as its distinguished context.

The CIS is a distributed database service which pro-
vides UWC applications and services a uniform means of
storing and retrieving contextual information. Clients may
query a server for all records matching a context template
or subscribe to receive records when matching information
is posted or expires. CIS servers may register the distin-
guished contexts of other servers, allowing clients to dis-
cover other members of the CIS federation.

Like the stick-e notes system, the CIS must support
a range of context classifications, including locale, au-
thorship, intended recipient of information, time of post-
ing, time of relevance, time of expiration, deliverability
(whether a record is ordinarily intended to be delivered once
or multiple times), mime document type, and an extensible
mechanism to allow the uniform handling of unanticipated
or idiosyncratic contexts.

As in stick-e notes, some contextual qualities may
be hierarchical. For instance, Real, physical locations
tend to be named in a hierarchical way: a location
in a room in a building on a street in a town, etc..
The CIS should treat nominal locations context in an
analogous way; we propose the convention <fine-
location>/<room>/<building>/<region>/
etc.. for describing nominal indoor locations. Likewise,
a locale such as a room or building may be described by
specifying the asterisk (*) wild-card character to match all
sub-locales, e.g. */borglab/E15/MIT would match all
fine-locations in the Borglab room in building E15 on the
MIT campus. Likewise, */*/E15/MIT would refer to
any location within the Wiesner Building. The CIS also
supports a general alias mechanism for nominal contexts,
so that the strings Borglab, borglab, and BorgLab
could all be aliases for the “official” room name 384F.

2.5. Perceptual Context Engine

The perceptual context engine (PCE) is a means of turn-
ing raw sensor data and other sources of information into
symbolic context descriptions, such as “talking to Charles.”
The PCE has a two-layer structure, with a perceptual con-
text classifier system at the foundation and an inference sys-
tem at the top.

The perceptual context classifier system is a signal pro-
cessing system which converts the raw sensor data into a
collection of probabilistic estimates. Conceptually, the clas-
sifier system allows the user to train event recognition func-

tions, or classifiers, to recognize patterns in the sensory data
and tag them as specific events. The mechanism by which
this time-series recognition occurs is a multi-level HMM
grammar which is capable of recognizing patterns at a range
of time-scales from seconds to days.

The inference system’s job is to take the output of the
classification system (and other sources of context such as a
system clock or GPS receiver) and convert this information
into symbolic context descriptions. The inference system
also allows for multiple interpretations of the underlying
data, such as continuous (latitude and longitude) as well as
nominal or discrete (Wordsworth, Garibaldi Square) repre-
sentations of location.

Although the inference system should support complex
inference models (Bayesian inference, graphical models,
etc.[5, 6]) driven by the classifier data, simple thresholding
may be sufficient for many applications if the underlying
classifier system is capable enough.

2.6. Strong Cryptographic Security and Authenti-
cation

It is a practical impossibility for CIS servers to verify the
context of their clients (which are typically executing on
untrusted hosts, communicating across untrusted network).
Since context-spoofing is trivial, security and authentication
in the UCW environment must be achieved through a de-
centralized public-key cryptography infrastructure. By en-
crypting the information stored in CIS servers, users can
ensure only the intended recipient of that information will
be able to decode it even though it is accessible by every-
one. Likewise, decentralized distribution of public keys (a
“web of trust”) and cryptographic signatures allow the ver-
ification of authorship and identity, and encrypted messag-
ing allows for the transfer of money and private information
over untrusted networks.

3. Ektara Examples

The following examples provide more detail about how
the various components of the Ektara architecture might
work together in real applications.

3.1. Alice’s Morning

When Alice puts on her integrated eyeglasses display it
announces itself to her wearable’s registration service and
provides a semantic description of itself (this might be ab-
breviated as “HCI device, output, visual, color, small, head-
mounted”). The registration service makes the additional
context determination that the display is being worn by Al-
ice (location: Alice) and hands this information to the con-
textual information server (CIS) on Alice’s wearable. The



“Alice” location matches the CIS server’s current list of
aliases for local (Alice is always local unless she takes off
the wearable) so the CIS server notifies the context-aware
interaction manager (CAIM) service which has subscribed
to context events of type “resource: local HCI.” The CAIM
service decides that the glasses display now provides the
best means of visualizing Alice’s unhandled messages. The
wearable’s “chassis glow” notifier light dims off and small
message icons appear in Alice’s peripheral vision.

As Alice walks into the kitchen, the CIS server receives
a new location description (“middle:kitchen:home”) from
the nominal location inference agent. The wearable’s CIS
server updates its list of aliases for “local” and re-runs the
CAIM’s query. The new list of local HCI resources in-
cludes the wall display (“HCI host, output, visual, color,
large, public”). The CAIM decides that the wall display
is now the most appropriate way to display Alice’s mes-
sages and requests access to it. The wall display, a sepa-
rate UWC host, checks the cryptographic signature on the
request, authenticates Alice’s wearable, and grants access.
The icons fade from Alice’s glasses and message summaries
appear on the large screen. Since there is now more visual
real-estate available, The CAIM displays lower-priority in-
formation (Alice’s news and financial headlines) below the
message summaries.

3.2. Talking to Charles

A brief description of the classifier system is provided
below; for more information see the Vismod technical
report TR-519 available online at
http://vismod.www.media.mit.edu/tech-
reports/TR-519/.

The perceptual context engine (PCE) which drives the
majority of Alice’s UWC applications is sophisticated
enough to recognize individual people, given sufficient
training. Starting with an “off the shelf” people-finder clas-
sifier and a simple training application, Alice has trained
classifiers to reliably recognize her coworkers, friends, and
a few of her clients.

The classifier takes two inputs, the sensor data from cam-
era and microphone, and the label stream from the user
or software agents. The goal of the classifier is to extract
meaningful features from the sensor data and use these fea-
tures to detect the events that the user has labeled. The
classifier is based on work done by Clarkson [3, 2], who
describes his preliminary classifier system as follows:

1. Extract basic features from the sensors at approxi-
mately 5Hz. We calculate all spatial moments up to or-
der 2 from the images, 10 equally spaced frequency co-
efficients from 50Hz to 8000Hz from the audio, includ-
ing measurements of auditory volume and the amount
of speech detected in the environment.

2. These features are collected continually as the user
goes through his/her day of activities. All of them
together are used to build a World Model by training
a Hidden Markov Model (HMM) with the above fea-
tures. The resulting World Model is really a rough de-
scription of the user’s surrounding sensory dynamics.

3. Next as the user labels various events and contexts
around him/her with the equivalent of a clicker trainer
(i.e. impulse labels that don’t specify duration), Event
Models are built by training more HMMs on the fea-
ture sequences surrounding each of the impulse labels.

4. The resulting Event Models are compared with the
World Model to recognize these events after the
training phase.
L(Event Model jObservations at t) >

L(World Model jObservations at t) indicates a
triggering of the event detector (where L() indicates
the log likelihood function). Or, equivalently we
can define an activation function for each classifier
as A(t) = L(Event Model jObservations at t) �
L(World jObservations at t).

The output of each classifier is fed into a simple infer-
ence agent that acts as a comparator with hysteresis. When
the value of the classifier goes high while the uncertainty is
low the context event “talking to X” (where X is the name
Alice assigned to the inference agent) is created. Alice’s
proactive reminder application, which subscribes to all of
the PCE inference agents, then queries the CIS server and
hands the results off to the interaction manager.

Weeks ago, Alice requested the reminder message
“swimming pool” to be triggered by a conversation with
Charles. This afternoon her PCE correctly identified the
chance encounter, the reminder application queried the CIS
server, and the interaction manager delivered it.

4. Implementation

Having developed the conceptual framework of the Ek-
tara architecture, we are now in the process of implementing
it. In this section, we discuss our progress and then describe
some research applications based upon the Ektara architec-
ture.

We chose Hive[8] to prototype the Ektara architecture
over other options (including Sun’s Jini, custom Java and
RMI code, and C/C++ library solutions) for several rea-
sons. First, Hive has proven itself a successful framework
for building distributed wearable and ubiquitous computing
applications, as has been discussed at length in [11]. Sec-
ond, Hive’s pure Java implementation and available source-
code it both portable and hackable. Third, Hive provides



all of the foundation features (except integrated strong en-
cryption) “out-of-the-box,” including asynchronous mes-
saging, the distinction between trusted and untrusted re-
sources, and a syntactic and semantic description frame-
work. Finally, Hive provides a built-in distributed resource
discovery mechanism and and a robust agents-oriented pro-
gramming environment.

We have a working prototype of the contextual informa-
tion service implemented in Hive. The main feature lacking
in the present version is the ability of clients to “subscribe”
to the service and receive updates whenever the subscrip-
tion query produces new results. This service, along with
Hive’s native resource discovery mechanism, provides the
beginnings of the dynamic decentralized resource discov-
ery system. Currently applications may search for resources
through these two separate mechanisms; a finished dynamic
decentralized resource discovery system will require their
integration into a single framework.

The perceptual context engine is also in development.
Clarkson[3] has implemented a working prototype of a low-
level perceptual context classifier, which currently exists as
a pure C++ windows application with a sockets interface.
Using only a camera and microphone as inputs, the proto-
type system has been able to achieve a better than %85 ac-
curacy (better than %90 in all cases but one) in recognizing
and distinguishing between a group of six actions, such as
entering and leaving the wearer’s office, etc.[3]. In addition,
we have developed a skeleton inference system under Hive
which does classifier thresholding and produces symbolic
context events. We are currently in the process of com-
bining these components into a unified perceptual context
engine.

The Context-aware interaction manager is the most com-
plex component of the Ektara architecture (next to the dis-
tributed programming system itself), and a clean implemen-
tation requires the implementation of all of the other com-
ponents. The system we envision is based on an “interaction
daemon” which asynchronously accepts and processes mes-
sages and interaction requests from client applications. The
messages produced by a CAIM client contain not only the
information to be displayed but also an assessment of how
important the information is, what type of user-response is
expected, and meta-content that allows the CAIM system
to rendering that information in whatever way best suits the
demands of context, resources, and application. We hope
to implement a working prototype of the CAIM by October
2000.

4.1. Applications

The Ektara architecture is a recent development we have
only just begun to implement the components and applica-
tions to test them. The first applications were designed to

test individual components, such at the contextual informa-
tion service. One of these applications, Auto-session, al-
lows the wearable user to sit down at any desktop machine
and automatically have a secure login session, both to that
machine and through that machine back to the wearable.
The auto-session application uses an IR-beacon based lo-
calization system[4, 12] and employs the CIS to discover
Auto-session enabled desk-top HCI resources. Since native
strong encryption is still missing in Hive, Auto-session em-
ploys SSH key-based authentication to securely validate the
user’s access to the desktop machine without the need for
typed passwords.

Another Ektara test application allows simple “post-it-
note” annotation of arbitrary context (typically location)
through HTML documents, and then proactively queries the
server based on the user’s current context; the results are
displayed on a web-browser. The distributed Ektara archi-
tecture allows multiple HTML-dispatching clients to “lis-
ten” to the same query agent, allowing the results of the
context queries to be displayed simultaneously by the user’s
wearable and by other displays in the environment (such as
a host with audio capabilities that the wearable lacks, or
a large display). This framework is sufficient to provide a
simple proactive context-driven reminder application.

The large-scale test application we are now working on
is a sophisticated context-aware reminder system very sim-
ilar to the one described in Alice’s scenario. This system
will utilize a prototype of the CAIM service (under devel-
opment) rather than a web-browser to interact with the user
and will be driven by a PCE engine capable of recognizing
a range of action (as well as location and time) contexts.

5. Conclusions

We strongly believe that the requirements outlined in
Section 1 are important considerations for the development
of real UWC applications, and that Ektara is the correct ar-
chitectural response to these requirements. Our implemen-
tation results are preliminary, but sufficiently advanced to
convince us of the appropriateness and technical feasibility
of this approach. It has been said of programming language
design that a good language makes the common things easy
and hard things possible. We believe that the Ektara archi-
tecture does this for creating context aware ubiquitous and
wearable computing applications.

6. Bibliography

References

[1] H. Aoki, B. Schiele, and A. Pentland. Realtime personal
positioning system for a wearable computer. In Digest of



Papers. Third International Symposium on Wearable Com-
puters, pages 37–43. IEEE Computer Society, 1999.

[2] B. Clarkson and A. Pentland. Unsupervised clustering of
ambulatory audio and video. In ICASSP’99, 1999.

[3] B. P. Clarkson. Recognizing user’s context from wearable
sensors. Technical Report 519, Vision and Modeling Group,
MIT Media Lab, January 2000.

[4] A. R. Golding and N. Lesh. Indoor navigation using a di-
verse set of cheap, weearable sensors. In Digest of Pa-
pers. Third International Symposium on Wearable Comput-
ers, pages 29–36. IEEE Computer Society, 1999.

[5] F. V. Jensen. An Introductino to Bayesian Networks.
Springer Verlag, New York, 1996.

[6] M. I. Jordan, editor. Learning in Graphical Models. Kluwer
Academic Press, 1988.

[7] G. Kortuem, Z. Segall, and M. Bauer. Context-aware, adap-
tive wearable computers as remote interfaces to intelligent
environments. In Digest of Papers. Second International
Symposium on Wearable Computers, pages 58–65. IEEE,
October 1998.

[8] N. Minar, M. Gray, O. Roup, R. Krikorian, and P. Maes.
Hive: Distributed agents for networking things. In Pro-
ceedings of ASA/MA’99, the First International Symposium
on Agent Systems and Applications and Third International
Symposium on Mobile Agents, 1999.

[9] J. Pascoe. Adding generic contextual capabilities to wear-
able computers. In Digest of Papers. Second International
Symposium on Wearable Computers, pages 92–99. IEEE,
October 1998.

[10] A. Pentland. Smart rooms, smart desks, smart clothes: To-
ward seamlessly networked living. MIT Media Lab Vision
and Modeling Group Technical Plan, January 1996.

[11] B. J. Rhodes, N. Minar, and J. Weaver. Wearable comput-
ing meets ubiquitous computing: reaping the best of both
world. In Digest of Papers. Third International Symposium
on Wearable Computers, pages 141–149. IEEE Computer
Society, 1999.

[12] T. Starner, D. Kirsh, and S. Assefa. The locust swarm: An
environmentally-powered, networkless location and mes-
saging system. In Digest of Papers. First International
Symposium on Wearable Computers, pages 169–170. IEEE
Computer Society, 1997.

[13] T. Starner, B. Schiele, and A. Pentland. Visual context
awareness in wearable computing. In Digest of Papers.
Second International Symposium on Wearable Computers,
pages 50–57. IEEE Computer Society, October 1998.

[14] C. R. Wren and A. P. Pentland. Dynamic models of human
motion. In Proceedings of FG’98, Nara, Japan, April 1998.
IEEE.


