Dynamic constraints are a natural way of describing many interesting physical systems. There are two general categories of dynamic constraints discussed in the computer graphics literature: reduced coordinate formulations and Lagrange multiplier dynamic constraints.
Reduced coordinate formulations involve re-parameterizing an unconstrained system with n degrees of freedom as a constrained system with i < n degrees of freedom. This can be quite difficult for arbitrary system of constraints, since there is often no obvious way of re-parameterizing systems involving constraint loops [5,3].
A more flexible technique is to use Lagrange multiplier dynamic
constraints. Lagrange multiplier approaches maintain constraints by
introducing constraint forces into the original n degrees of freedom
system. Re-parameterization is not involved, and the constraints are
described in a modular way which makes the construction of arbitrary
systems of constraints straightforward. However, Lagrange multiplier
techniques involve solving for a vector of Lagrange multipliers
each time the constraint forces are evaluated, which
requires the solution of a system of linear equations. For a system
of n constraints, this generally requires solving an equation of the
form
Recently, Baraff [3] has described an O(n) Lagrange multiplier solution for acyclic constraint problems. Central to this technique is an always sparse formulation, and a relatively simple O(n) technique for solving the resulting linear system.
Over the last year and a half, I have developed an iterative algorithm for solving arbitrary, cyclic, Lagrange multiplier constraint problems. This algorithm (which is central to my as-yet unpublished M.S. Visualization Science thesis) appears to be O(n) with respect to the number of constraints. However, I do not yet fully understand the convergence properties of this algorithm, which (I believe) is essentially a relaxation process. Gaining a better understanding of this process would be a great benefit to my research.